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The familiar unrestricted Hartree-Fock variational principle is generalized to 
include quasi-free states. As we show, these are in one-to-one correspondence 
with the one-particle density matrices and these, in turn, provide a convenient 
formulation of a generalized Hartree--Fock variational principle, which includes 
the BCS theory as a special case. While this generalization is not new, it is 
not well known and we begin by elucidating it. The Hubbard model, with its 
particle-hole symmetry, is well suited to exploring this theory because BCS 
states for the attractive model turn into usual HF states for the repulsive model. 
We rigorously determine the true, unrestricted minimizers for zero and for non- 
zero temperature in several cases, notably the half-filled band. For the eases 
treated here, we can exactly determine all broken and unbroken spatial and 
gauge symmetries of the Hamiltonian. 

KEY W O R D S :  Hubbard model; Hartree--Fock theory; symmetry breaking; 
antiferromagnetism. 
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1. INTRODUCTION 

The Hubbard  model has long been recognized as an interesting imitation 
of electron-electron interactions and of the correlations they induce. It also 
turns out, as we show here, that it is an interesting testing ground for 
Har t ree-Fock  (HF)  theory, and it is one of the very few examples in many- 
body theory for which many properties of the true, energy-minimizing H F  
ground state and pressure-maximizing positive-temperature state can be 
precisely elucidated without approximations,  restriction, or unjustified 
assumptions. (To avoid misunderstandings, we should make it clear at the 
outset that we consider only unrestricted H F  theory.) 

While studying the H F  theory of the Hubbard  model we were led to 
a critical study of H F  theory itself--namely, the proper context in which to 
view it, as well as some of its very general features. This is the context of 
Section 2, which we can summarize as follows. 

The usual H F  theory for an N-particle system starts with a Slater 
determinant ~, formed from N orthonormal ,  one-particle functions of space 
and spin; the energy is then minimized with respect to the choice of these 
N functions. This ff will generally break certain symmetries inherent in the 
original problem-- typical  examples being translation invariance and spin 
or spatial angular momenta.  That  being the case, it is not  worse to permit 
a violation of particle-number conservation as well--if  the energy can 
thereby be lowered. This is precisely what was done by Bardeen, Cooper,  
and Schrieffer t2~ in their theory of superconductivity. It is important  here 
to recall the simple fact that if a state violates a symmetry of the 
Hamiltonian (e.g., angular momentum,  particle number)  and if that state is 
then decomposed into its irreducible components,  at least one component  
will have an energy no greater than (and often less than) the original state. 

The proper Hilbert space, then, is Fock space ~-, the sum of all the 
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original N-particle spaces with N = 0, 1, 2 ..... The simplest Hamiltonians on 
are, of course, the quadratic ones, and they are all diagonalizable by 

Bogoliubov unitary transformations, which transform creation operators 
c t into linear combinations of c's and c*'s. In the context of fermionic 
theories, this transformation was discovered at the same time by Valatin ~3~1 
and Bogoliubov/4) The ground state of a quadratic Hamiltonian H Q is 
a Bogoliubov transformation ag applied to the vacuum (zero-particle 
state) 10). We call all such states of the form r a generalized H F  
state because the original N-particle determinant (which has the form 

* * . .c~ 10) and which we call a normal state) is only the special case C l C  2 �9 

corresponding to an H e that contains terms of the form c*c and N terms 
of the form cc t, but not the particle-nonconserving cc or c'c*. Such 
generalized HF states q /10)  are also called quasi-free states because they 
satisfy the conclusion of Wick's Theorem. Indeed, all quasi-free states are 
of this form, as we show below. 

A generalized HF ground state is thus the ground state of some quad- 
ratic H Q in Fock space. A positive temperature HF state is, likewise, the 
usual grand canonical Gibbs state for such an H ~ In analogy with the 
ground state, such a grand canonical Gibbs state is called normal when H ~ 
is particle-conserving. For the gound state, the H Q is determined so that 
the expectation value of the original many-body Hamiltonian H of our 
system is a small as possible. For positive temperatures, H o is chosen (in 
a temperature-dependent way) to maximize the pressure in the grand 
canonical ensemble. 

The paired (BCS) state, which is so important in superconductivity 
theory, is also of the form ~?l 10), a Bogotiubov transformation of the 
vacuum. Thus, normal HF theory and BCS theory are but two aspects of 
the same general theory: find the best substitute quadratic Hamiltonian or, 
equivalently, find the best Bogoliubov transformation. This relationship 
was certainly known/4's'5'1~ but our personal experience is that it is far 
from being universally appreciated. At first it seems surprising that one- 
particle states can somehow evolve into pair states, and the explanation 
is roughly the following: It is always true that for each mode ~, 
qlc*:,~'?l*=d*+e, where d* (resp. e) is proportional to a creation (resp. 
annihilation) operator, but it is possible that d*=  0 or e = 0. If d*=  0, 
then @ = q / 1 0 )  contains the mode e*, i.e., e'e@ = (pos. const)~. If e = 0 ,  ~O 
just contains a factor proportional to 10), i.e., d~, =0.  If e and d t are both 
nonvanishing,, then such modes must come in pairs (as we prove in 
Theorem 2.2) and ~ is found to contain a pairing factor (1 +d'e*)  acting 
on 10). Alternatively, it turns out that to every eigenvalue 1 of the particle- 
conserving part ~, of the one-particle density matrix (1-pdm) F associated 
with the state @ = q/10)  there corresponds a simple one-particle state in qJ, 
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but to every eigenvalue of y between 0 and 1 there corresponds a pair state 
in ~O. 

The 1-pdm plays an essential structural mathematical role in HF 
theory. The set of quasi-free states (generalized or not) does not have a 
linear or convex structure. A Linear or convex combination of such states 
is not necessarily a quasi-free state. However, a convex combination of 
l-pdms is a 1-pdm, i.e., F = 2 F ~ + ( 1  - 2 ) F ,  is a 1-pdm i f0~<2~<l and F~ 
and F 2 are l-pdms. This fact allows us to compensate for the missing 
convex structure of quasi-free states. Thus, given ~k~.2=q/~. ~ 10) with q/~.2 
being two Bogoliubov transformations, we can form the 1-pdms F~ and F z 
and then form F as above. Finally, we can return to the level of the quasi- 
free states and thereby define a quasi-free state that interpolates between 
the two original states. Section 2 contains a detailed description of quasi- 
free states, density matrices, and quadratic Hamiltonians. We present this 
partly for the reader's convenience, but also because we could not find 
quite what we need in the literature on quasi-free states (which usually con- 
centrates on quasi-free states in terms of algebraic automorphisms rather 
than operators) or in the excellent book by Blaizot and Ripka, ~5} which 
does not deal explicitly with the infinite-dimensional Hilbert space L2(R3), 
the space of square-integrable functions on R 3, needed for our other 
theorems in Section 2 on atomic HF  theory. 

The notation in Section 2 is a bit complicated and one reason for this 
is the necessity to introduce antiunitary transformations (because c's trans- 
form by antiunitaries if ct's transform by unitaries). Consequently, if one 
tries to write equations in a basis-independent way, one needs more than 
the usual notation of linear operator theory. If one fixes a basis, however, 
one can use the ordinary linear operator notation, but then complex 
conjugates (denoted by superscript bars) and indices appear in profusion. 
We have opted for the second route. 

The general Theorem 2.14 in Section 2 about the usual (N-particle) 
HF  theory should have been well known but seemingly was not. It applies 
to repulsive two-body potentials (as in the real world of electrons with 
Coulomb interaction) and states two things. The first is that the N one- 
particle states are precisely the energetically lowest eigenvectors of the HF 

�9 operator. (This fact was stated in ref. 24 and the proof was sketched in 
ref. 21.) While the N HF orbitals are distinct eigenvectors of the HF 
operator, it is not obvious, a priori, that they are the lowest ones; indeed, 
this might not be true when the interactions are attractive. The second part 
is surprising, for its conclusion runs counter to what one might naively 
assume. There are never unfilled shells (for any choice of N). That is to say, 
the degeneracy of the last level of the HF operator is always precisely what 
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is needed to accommodate the available number of electrons--not more 
than that! 

Readers who are already familiar with the formalities of Section 2 are 
advised to skip over it and to turn to Section 3, which contains the HF  
analysis of the attractive Hubbard  model. It beautifully illustrates the rela- 
tionship between BCS and normal states discussed above. It is well known 
that a particle-hole transformation (on the down spins alone) converts the 
repulsive and the attractive models into each other. What does this do to 
generalized HF  states? The answer, simply, is that a normal HF  state may 
be turned into a BCS state (in which there is pure pairing without isolated 
one-particle states). Indeed, it turns out that the repulsive Hubbard model 
at half-filling (i.e., the expected particle number equals hAl, the number of 
sites in A) always has a normal state as its optimal state (for zero and for 
positive temperature). The attractive model at half-filling then has a BCS 
state (and, when the lattice is bipartite, also a normal state of the same 
energy) as its ground state. This was well understood by Dichtel et al., ~~ 

but they did not prove that their state was, indeed, the true minimum- 
energy HF state. We do so here as a special case of our results in Sections 
3 and 4. 

At the outset we emphasize that translation invariance is not assumed. 
By the word "lattice" we mean a collection of points connected by bonds 
(or edges). Perhaps "graph" would be more accurate, but physicists are 
accustomed to the word lattice. If our lattice does have translation 
invariance, e.g., a hypercubic lattice, we shall say so explicitly. We do, in 
fact, investigate translation-invariant cases and we do discuss the cases in 
which the translation invariance is broken by the HF state. Thus, there is 
a special column in the tables of Section 5 for lattices that have the addi- 
tional property of translation invariance (or some other spatial symmetry). 
In any case, our systems are always finite. 

Among the things we can prove about H F  theory for a bipartite lattice 
is the existence of a phase transition from a BCS state at low temperature 
to a normal state at high temperature. 

Section 4 contains the analysis of the repulsive Hubbard model; most 
of the results here--but  not al l--are a transcription of the results in Sec- 
tion 3 via a particle-hole transformation. One of the earliest HF studies of 
this model was by Penn. ~26~ 

One question that is peculiar to unrestricted HF theory is whether or 
not the orbitals (which are well defined even for the generalized, particle- 
nonconserving theory) are simple products of spatial functions and spin 
functions (the latter being one of two types, either spin up 1" or spin down 
~). For the half-filled band and real hopping matrices we can show this 
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to be true for both the attractive and repulsive models; this is one of our 
more complicated proofs, and it involves a somewhat delicate convexity 
argument. 

Another question concerns the uniqueness of the HF  state for a finite 
system. Apart from possible global gauge transformations (those described 
as "broken" in Tables I - I I I  in Section 5), uniqueness does hold for a half- 
filled band, as we prove in Theorems 3.12 and 4.5. 

The main thing one wishes to know about the true HF state is 
whether or not it is qualitatively correct. From that point of view, a main 
question is whether the HF state breaks the symmetries of the problem, 
and if it does so in conformity with what one believes to be the case in the 
corresponding exact quantum state. For example, the repulsive Hubbard 
model on a bipartite lattice has total spin equal to [IA[ - IB[I (where IA[ 
and [BI are the number of sites in the two sublattices) in a finite system 
ground state t~91 (see also ref. 20) and is expected to have N6el long-range 
order in three or more dimensions. This N6el state partially breaks the 
original translation invariance of the Hamiltonian (if there is any to start 
with) into a smaller group consisting of translations on each sublattice 
separately. This is exactly what we prove to be the case for the HF ground 
or Gibbs state. Indeed, after a suitable rotation of the spin basis, we will 
find the spins to point upward on the A-sublattice and downward on the 
B-sublattice This validates the predictions of mean-field calculations for 
the translation-invariant case in the physics literature. ~1~ As far as we 
know, this self-consistent antiferromagnetic A-B spin structure was 
assumed to be valid in the energy-minimizing ground state, but it was never 
proved that this was indeed true. In principle, some sort of further sym- 
metry breaking could occur. Our results show that this does not happen. 

Section 5 summarizes what we can prove about the breaking of sym- 
metry in different cases. Unfortunaterly, different combinations of condi- 
tions have to be treated separately; the basic possible postulates are bipar- 
tite (or nonbipartite) lattice, real (or complex) hopping matrix, repulsive or 
attractive interaction, half-filled (or not half-filled) band, and translation 
invariance (or no invariance). The symmetries to be investigated are spin 
SU(2), pseudospin SU(2), U(1) (particle conservation), Z 2 (particle-hole 
symmetry), and translation invariance. For the reader's convenience, our 
conclusions are encapsulated in three tables. 

The phrase "symmetry breaking" does require a precise definition and 
we supply that in Section 5. To us it means that the state fails to have the 
symmetry that the Hamiltonian has. Some authors, e.g., ref. 5, use a more 
restrictive definition, namely that the state also fails to belong to exactly 
one irreducible representation of the symmetry group. For example, the 
completely magnetized ground state of a Heisenberg ferromagnet breaks 
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rotat ion symmetry  in our  sense, but not in the restrictive sense. As a mat ter  
of experience, however,  this case is rare, i.e., usually the two senses agree 
in practice. At least this is so in the cases we can analyze completely here. 
In any event, as explained in Section 4, the restrictive definition requires a 
linear structure and therefore is not appropr ia te  for H F  theory. 

2. DEFINIT ION A N D  PROPERTIES OF GENERALIZED 
H F STATES 

Since its introduction in 1930 the notion of a Ha r t r ee -Fock  ground 
state and posi t ive- temperature  state has evolved. Our  purpose in this sec- 
tion is to state clearly several definitions of these states, demonstra te  their 
equivalence, and prove some of their fundamental  properties. Despite years 
of at tention to the subject it is surprising that some of the basic properties 
have not been clearly stated, much less proved. Two of these are in 
Theorem 2.12 (the variational principle (Is)) and Theorem 2.14, which states 
that  there are never unfilled shells, regardless of the particle number.  

2.a. Definition of HF States 

The original point of view was that  a H F  state is a single determinant  
of one-particle orbitals, in the variables z , ,  z2 ..... zN, where z = ( x ,  a)  
denotes a space-spin  variable for one particle. The inner product  of two 
functions is (r I r  Y~, S ~b~ r a)dx. The usual H F  state is then 

~bHv=(N!)-l/2Det[tPi(Xj)]l~i.i<~N=:(N!)-l/2(cpl A --. ^ r (2a. l)  

in which De t [ ( tp i l  ~pj)] = 1. 
This is not  general enough for our purposes because we also want  to 

allow for H F  states in which the particle number  is not conserved. After all, 
there are other quantities, such as total spin, total momen tum,  and total 
angular  momen tum,  that  are not necessarily sharp in a H F  state, and there 
is no reason why the particle number  should not suffer a similar fate. In 
any case, when we go to positive temperature,  the H F  state should not be 
expected to be a pure state if it is to have any physical relevance. For  these 
reasons we are going to make  definitions that go beyond simple deter- 
minants. There is nothing new about  the definitions given here, but it is 
impor tan t  for us to be very clear about  them. 

Abstractly we begin with a one-particle Hilbert  space ~'~ (finite or 
infinite-dimensional, but always separable).  We define the fermionic 
N-particle space to be the ant isymmetr ic  tensor product  

N t imes 

~tf~N~ := ~ ^ . . .  ^ ~ff for all N =  1, 2, 3 .... 
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A simple vector in o f  era is of the form 

f l  A f2 A " ' ' .A f N : =  ~ (--)"'f,,~l~|174 "'" | (2a.2) 
permutations n 

where each f,. is in of.  A general vector in Of~N~ is a (possibly infinite) 
linear combination of such simple vectors. We note that the squared norm 
of the above simple vector is 4 

( f l  A . . .  A f N I f  t A . . .  A f N ) = N ! D e t [ ( f , . I f i ) ] , < . i . j < _ N  (2a.3) 

With the identification of~l~= o f  and of~o)= C.  10), where 10) is the 
vacuum and ( 0 1 0 ) : = 1  (of course, 10 ) r  we can define the Fock 
Hilbert space 

:= of~~ o f t l ~  9 ~ ' ~  ... (2a.4) 

To any vector f ~  o f  we associate a creation operator c t ( f )  and an 
annihilation operators c( f ) ,  each acting on ~ .  The creation operator acts 
on simple vectors by 

c t ( f ) ( f l  A . . .  A f N ) = ( N + l ) - l / 2 ( f A f l  A - - -  Af ,  v) (2a.5) 

This definition extends to ~ by linearity, and c ( f )  is defined to be the 
adjoint operator of c*(f). Note that c ( f )  10) = 0 and that c(2f) = ]tc(f) for 
any f e o f  and any 2~C.  (Here and elsewhere complex conjugation is 
denoted by a bar.) By this construction the creation and annihilation 
operators fulfill the canonical anticommutation relations (CAR): 

{c(f) ,  ct(g)} := c ( f )  ct(g) + ct(g) c ( f )  = ( f l  g ) "  1 
(2a.6) 

{ct(f) ,  ct(g)} = {c(f),  c(g)} = 0  

Here, 1 is the identity operator on ~ .  We remark that the Fock space 
is determined by the vacuum 10) and a complete set of operators 
c t ( f ) ,  c ( f )  that obey the CAR. Indeed, simple vectors can be written as 

f t  A . . .  A fN=(N! ) l / 2  c t ( f l ) c t ( f 2 ) ' ' ' c t ( f t r  (2a.7) 

A Bogoliubov transformation of ~ is a unitary operator W on ~ with 
the following special property: For each vector f E  off 

d r ( f )  := W ' c t ( f )  W't  = ct(g)  + c(h) = ct(~f)  + c(~f) (2a.8) 

4 Dirac notation will be used. ( f l  g )  is the inner product o f f  and g, which is linear in g and 
conjugate linear in f .  ( f l  A I g ) =  ( f l A g )  is the inner product o f f  with the vector Ag, i.e., 
the operator A acts to the right. It is important to keep this in mind when A is not self- 
adjoint. 
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Here g and h are vectors in ~r and, by the linearity of ~r we see that  there 
must  exist a linear opera tor  fi on g such that  g = fif and there must exist 
an antilinear opera tor  ~ on Yg' such that  h = O f  [anti l inear means that  
~(~.a + b ) =  ~.O(a)+ t3(b)]. It  is easy to check that  the unitarity of  "W, which 
in part icular  implies the CAR for the operators  d t ( f ) ,  d ( f ) ,  results in 
certain conditions on ~ and 0. Because ~ is antilinear, these are not  easy 
to state. One way is to choose an o r thonormal  basis f , , / ' 2  .... in .,~ and 
define the matr ix  elements % =  <f~ I Of j> and u/j= <f,.[ fifj>. In terms of 
the linear opera tors  u and v having the same matrix elements the condit ion 
is that  the linear opera tor  

acting on ~f' ~ o~r is a unitary matrix. Here if, 0 denote the linear operators  
with the complex conjugate matrix elements if0, 00" An equivalent, basis- 
independent  s tatement  is this: to every antilinear opera tor  ~ we can always 
associate an antilinear opera tor  O r such that  < f  [ 6g> = <Orf  l g> for every 
f g �9 g .  The  condit ion becomes 

/~tt] + oTo = 1 = riO t + O0 r 

O r f i + f i t O = O =  JOT+Off t 
(2a.10) 

In case ~f' is finite-dimensional the converse is also true, i.e., if a pair  
(fi, 0) satisfies (2a~10) then there is a unique unitary opera tor  ~ on 
satisfying (2a.8). If g is infinite-dimensional it may  not be possible to find 
a ~t/', even if (2a.10) is true. This phenomenon  occurs, for example, when 

= 0. A sufficient condit ion for the existence of ~r is given in Theorem 2.2. 
The  second notion needed for generalized H F  theory is a quasi-free 

state. In general a state 19 on the set of bounded operators  that act 
on ~,~ is a (complex-valued) linear map  [i.e., for all operators  A and B, 
p(2A  + B) = 2p(A) + p (B) ]  satisfying the conditions p ( l )  = 1 and 
p ( A t A )  >10 [which implies p ( A ) =  p(At) ] .  The example that will concern 
us most  is a pure s tate  p ( A ) =  <~k I A~,> for some ~ b e ~ .  Another  impor-  
tant  example is the Gibbs s tate  p ( A ) = Z - ~ T r [ A e x p ( - f l H ) ]  with 
Z = T r [ e x p ( - f l H ) ]  for some Hamil tonian  H on ~- with Z <  oo. 

A state p is quasi-free if all correlat ion functions can be computed  
from Wick's  Theorem,  i.e., if the operators  e~, e2 ..... e2s are each either a e t 
or a c, then p ( e , e 2 . . . e z u _ , ) = O  and 

p(e  l e2 " - e2N) = ~ '  ( --  )~P(e~,)e,~2~) . . . p(e ,c2u_ l~ e,~2m) (2a. 11 ) 
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where ~ "  is the sum over permutations n that satisfy n(1)< n(3)< ... < 
n (2N-1 )  and n ( 2 j - 1 ) < n ( 2 j )  for all 1 <~j<<.N. The right side of (2a.ll) 
is also known as the Pfaffian of the triangular array [p(eiej)]~<. i<j.< 2N. In 
particular, we have the important formula 

p(ele2e3e4)=p(ele2)p(e3d4)--p(ele3)P(e-,e4)+p(ele4)p(e2e3) (2a.12) 

When this is applied later to the expectation value of the two-body poten- 
tial these terms will correspond to the direct, the exchange, and the pairing 
energies [see (2c.8)]. 

We remark that the set of quasi-free states is invariant under 
Bogoliubov transformations, i.e., if p is quasi-free and ~V is a Bogoliubov 
transformation, then the state p,~.(A):=p(~/UA# ~*) is quasi-free, too. 

If p is a pure state, i.e., p(A)= (qs[ A [qJ), and if the vector ~ lies 
solely in some fixed ,g,(m (including the possibility N--0),  then p is a 
quasi-free state if and only if qs is a normalized simple vector (including the 
possibility ~,= 10)). This state is the usual N-particle Slater determinant 
state defined by taking expectation values with respect to the vector qJHv 
given in (2a.1). 

We can define the (unbounded) particle number operator on ~- by the 
formal sum 

~P= ~ NH ~m (2a.13) 
N = 0  

where H (u) is the projector onto the subspace ,,ug'(u)c~. (Note that 
I V Z u  9(m.) A state p has finite particle number if 

p(A/') := ~ Np(H (u)) (2a.14) 
N = 0  

is finite. These are the states of primary physical interest. 
A generalized Hartree-Fock state is defined to be any quasi-free state 

having finite particle number. 

2.b. One-Particle Density Matrices 

Let p be a state and let {fl ,  f2,"" } be an orthonormal basis in ~*ff. We 
define the one-particle density matrix (1-pdm) F to be the self-adjoint 
operator on g ~ g whose matrix elements are 

gl ((hhl2)[F(g2))=p([c*(g,)+c(~2)][c(h,)+ct(f l2)])  (2b.1) 
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where ~ := ~,k/Ykfk when g = ~k  Itkfk. Note the ordering of the operators 
here. The matrix 1 -  F has a more "natural" appearance; using the CAR, 
we find that 

<(hh~2) ( l - -F)(~a2)>=p([c(h~)+ct( f~2)][ct (g~)+c*(~2)])  (2b.2) 

Note that the definition of F as an operator on oaf'~ ~ depends on 
the choice of the basis {f~,_/'2 .... }. If this basis is changed, then F itself 
changes if the antiunitary map g~-, ~ changes (which may or may not 
occur). The underlying reason that F cannot be defined in a basis-inde- 
pendent way is that F is not, intrinsically, a linear map on ~ E) Jrt~; it also 
has an antilinear component. This basis dependence is the price we pay for 
avoiding the introduction of an abstract antiunitary map. The quantities 
we are going to compute later by means of the 1-pdm F will, however, be 
independent of the choice of the basis {f~, f2,... }, which we shall consider 
to be fixed henceforth. 

2.1 Le mm a .  For any state p and any orthonormal basis { f l ,  f2,...} 

0 ~< F~< 1 (2b.3) 

holds as an operator on ~ ~) 9f ~. 

ProoL Let t p = ( f , g ) e o u f ~ ) ~  '~ be normalized. Then 1=11~0112= 
Ilfll= + Ilgll~= Ilfll2 + Ilgll 2 and, from (2b.1) and the CAR, it follows that 

0 <~ (tp Fcp> = p[(c*( f )  + c(g)) (c( f )  + c*(g))] 

It is 
Writing 

= (llfll 2 + II gll =) p( l )  - p[ (e ( f )  + c*(~))(c*(f) + c(g))]  < 1 II 

(2b.4) 

convenient to view F as a 2 x 2 matrix of operators on ~f'. 

one easily finds, using c~ := ct(fk), that 

<f,. [Yfk)=p(e~c. , )  

<f,,,la*fk > * * =p(ekcm) 

where the operator /1  is defined by 

<f., I .4f, > :-- <f., I Afk> 

(2b.6) 

(2b.7) 

822/76/1-2-2 
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Note that 

7 ,=y ,  ~ r =  _~ (2b.8) 

(where e r  := e,). 
In view of (2a.11 ) and the density of polynomials in the algebra of 

observables, the 1-palm F of a quasi-free state p uniquely determines p. 
More importantly, any F is the 1-pdm of a quasi-free state p, as we shall 
show in Theorem 2.3 below. We shall, however, restrict attention to finite 
particle number states. It is easily seen that W = T . ,  c~c, and that, for any 
state, 

p(W) = ~, p(c~e,) 
k 

First, we give the relationship between the 1-pdm F of a state p 
and the l-pdm F,~. of the transformed state p~,-,p,v.-(A):=p(~I/A#/*), 
assuming ~r  is a Bogoliubov transformation. Using (2a.9), we can write 
the Bogoliubov transformation (2a.8) as 

(") (2b.9) 
el  = i  kVli Uli)kC~) " C[ 

Note, as indicated above, that each (g'4)ki is a 2 x 2 matrix. We then find 
that 

( l - - l ' , r )k ,=(p(dJ~)  p(dkd')~=E(W*)k,( l -F)u(W)i ,  (2b. lO) 
\p(d~d,) p(d~d,)) ,.j 

Thus 

F~-= WtFW (2b.11) 

We now give a sufficient condition for the operator W in (2a.9) to 
represent a Bogoliubov transformation in o ~ .  

2.2 T h e o r e m .  Any unitary operator W of the form (2a.9) that 
satisfies the condition Tr[vv*] < co ahvays corresponds to a Bogoliubov 
transformation ~1 r on ~ with 

d r ( f )  := ~#fc*(f) ~g't = c*(uf) + c(vf) (2b.12) 

Moreover, ~tr ] 0 ) =  I~)  is the state 

I~b) = F I  {(1-~i)'/'-+~]/'-c*(hi)c*(k~)} f l  c*(gi)I0) (2b.13) 
i i = 1  
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Here, ~1, ~2 ..... denote the eigenvalues of vv* in the interval (0, 1) counted 
with half their multiplicity (these eigenvalues are all evenly degenerate), and 
r is the multiplicity of 1 as an eigenvalue of vv*. The vectors gi, g2 ..... gr, 
ht, ki ,  h2,k2 .... form an orthonormal family of eigenveetors of vvt with 
gl,  g2 . . . . .  g, being the eigenvectors of  eigenvalue I. The pair of  vectors h~ and 
k~ := ( ( i - ( 2 ) -  i/2u~tf~ i are eigenveetors of  vv* of  eigenvalue (i- 

Remark. We refer the reader to ref. 1, where the first s tatement  of the 
lemma, together with its converse (which is not needed here), is proved 
(ref. 1, Theorem 7). However,  we are not aware that  the explicit formula 
(2b.13), which we do require, is readily accessible. 

ProoL The unitarity of the opera tor  W implies the following condi- 
tions similar to (2a.10) for the linear operators  u and v: 

utu + fitfi= 1 = uu t + or* 
(2b.14) 

6t/g + u t v  ~- 0 = Ul.~ t + V/,/t 

Thus, 0 ~< vvt ~< 1 as an opera tor  on J f  with purely discrete spectrum, thanks 
to T r [ v v t ]  < oo. Fur thermore ,  if h is a normalized eigenvector of vvt with 
eigenvalue 0 < ~ < 1 ,  we find, using (2b.14), that  k = ( ~ - ( 2 ) - t / 2 u ~ t h  
satisfies 

vv*k = (~ - ~2) - 1/2 vv*u~*fi = - ( ~  - ~2)-1/2 vfi*fiO*/~ 

and thus k is also an eigenvector of vv t. Moreover ,  

( h I k )  = ( ~ - ( 2 ) - V 2  ( h l u6th ) = - ( ( - / , ' 2 ) ( h  I vath ) 

= - ( ( - - ~ 2 ) ( f f v t h  [ 17) = - ( h  ] k )  (2b.16) 

and hence ( h l k ) = 0 .  Likewise, we see that ( k [ k ) =  1. I terating the map  
from h to k will not produce more  eigenvectors since 

(~ _ if2)- 1/2 ufit/~ = (~ _ ~2) -1 ufit~vth = (~ _ ~e)- l uutvvth = - h  

We can thus find an or thonormal  basis for ~ of the form gl . . . . .  gr, 
hi ,  k l ,  h2, k2 ..... Ii, 12 ..... where g l ,  g2 .... and Ii, 12 .... are the eigenvectors of 
vv* of eigenvalue 1 and 0, respectively. Another  or thonormal  basis is given 
by v*r ..... f*r ~-l/2V*hl, ~i-1/2~*/~1 ..... utfl, u*fa ..... To prove this, we first 
note, as is easily seen, that  this is an or thonormal  family. We then note that  
if f ~  .,~ is or thogonal  to all members  of this family, then ~ * f f =  0 (because 
~f is or thogonal  to r ..... r but not necessarily to [l,...; however 
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~t annihilates [~ .... ). Hence vtuf= - ~ t f f = 0 .  Thus uf is an eigenvector for 
vv* of eigenvalue 0, i.e., ufespan{l~, 12,...}, but then 

f =  (1 - f t ~ ) f  = u+ufespan{utll, utl2,...} 

and thus f = 0. 
Using this latter basis, we define, in agreement  with (2b.12), 

d(vtgi) : =  r + ct(vvtgi) = ct(gi),  i = 1 ..... r (2b.17) 

where we have used u ~ t g i = - v f i t g ~ = 0 ,  which follows from uu*gi= 
( 1 - v v + ) g ~ = 0 .  We also make  the definitions, for i =  1, 2 ..... 

d(~ 7 Inothi) := ~/-- l]2r -]- ( ~  l/2ct(vvthi) 

= (1 - ~)1/2 c(ki) + ~nct(hi) (2b.18) 

d(~[-l/2otfci) := ~7 t/2 c(uO*k,) + ~j- m ct(vvtki) 

= - ( 1  - ~i)l/2c(h~) + ~/2c*(ki) (2b.19) 

d(u'tli) :--- r + ct(vfft[t.) = c([t. ) (2b.20) 

We shall now show that  (2b.13) defines a normalized vector  I~') in o ~ 
annihilated by all the operators  in (2b.17)-(2b.20). To  show that  the some- 
what  formal expression on the right side in (2b.13) defines a vector in o~, 
we expand the (possibly infinite) product,  thereby arriving at a (possibly 
infinite) sum of (possibly infinite) products. Each term in this sum that  
contains a product  of infinitely many  c+'s is zero since it will also contain 
a product  of  infinitely many  ~/2, and (j--* 0 as i ~ oc. Hence, the sum is at 
most  a countable sum of or thogonal  simple vectors in ~ .  An appropr ia te  
t runcation of this sum gives 

lib'N) := H (1--~i) '/2 H [ ( 1 - r 1 6 2 1 6 2  f i  c ' t (g i ) I  0)  
i>N i<~N /=1 

(2b.2l) 
We note that  

(~N[ r = YI ( 1 - r  Y. r (2b.22) 
i>N i>N 

which is nonzero and converges to 1 as N---, oo since ~ i  (i < oo. If M >  N, 
then [~'N) is or thogonal  to [~bM--~,^,) and 

<q,M-~N I q,M- q,N) = (r I ~M>-  (r I r  

= 1-I ( 1 - ~ , ) -  I-I ( 1 - ( , ) ~ 0  (2b.23) 
i>M i>N 
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as N-- ,  oo. Hence there is a normalized [~b) e ~  such that  I~bN) -~ [~)  as 
N - ,  oo. It is easy to check that  any opera tor  in the list (2b.18)-(2b.20) 
will annihilate [~bN) if N is large enough. Thus [~ )  is annihilated by 
all the opera tors  in (25.17)-(25.20) and hence by any opera tor  d ( f ) : =  
c*(~f) + c(vf). 

Denot ing d~ := c*(ufk) + c(vfk) (recall fk = f k ) ,  we define ~t/': ~ ~ .,~ 
by 

t t t "tCc~ . - .c ,  1 0 ) = d ~  . . . d ,  I~O) {25.24) 

for all n >/0. The unitary of W implies that dk* satisfy the CAR and hence 
that  ~C is an isometry. It is also clear that  ~ satisfies (2b.12). 

To  show that ~/C is unitary, we first observe that  ]0) can be written 
as a linear combinat ion  of. vectors of the form (2b.24). This is easily seen 
by interchanging the roles of [0)  and ] ~ )  and of W and W ~ in the 
argument  .which led to the construction, (2b.13), of ]~) .  F rom this it 
follows that all simple vectors c] . . -c ,* ]0)  can be written as combinat ions 
of the vectors of the form (2b.24). Indeed, from (2b.14), 

c~ = c*((uu* + vv*)L) + c((u~* + v~*)L)  = d*(u*A) + d(~tf~) 

Thus ~U is invertible and hence unitary. II 

2 .3  T h e o r e m .  Let 0 <. F <  1 be an operator on ~ (~ 9r ~ of the form 
(2b.5), subject to (2b.8), and assume furthermore that T r [ 7 ]  < ~ .  Then 
there exists a unique quasi-free state p with finite particle number such that 
F is the 1-pdm of  p. 

Remark. Suppose we are given a ~, satisfying 0 ~< ~, ~< 1. We can set 

('o o_,) 
i.e., set e = 0 and, according to Theorem 2.3, we can extend F to a quasi- 
free state p. In other words, given y, we can find a particle-conserving quasi- 
free state having this 7 as its 1-pdm (whether or not Tr  7 is an integer). By 
a particle-conserving state we mean a state (such as a Gibbs  state for a 
particle-conserving Hamil tonian)  that is a convex combinat ion  of states, 
each having a definite particle number,  i.e., there are no cc or c'c* matrix 
elements in this state, which is the same thing as saying c~ = 0. However,  
unless ~, is a p/ojection (i.e., a usual H F  state), F cannot  have a definite 
particle number,  i.e., p ( ~ r 2 ) >  p ( X ) 2 .  In fact, defining 

P(2 /2)  = Z N~P(~g)) = Z p(c~c~c~e,) 
N k.I  
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we can use (2a.12) to compute  

p(y~) = p(y)2 + ~ (~,~,,, + :(t, ~,,,) + y~ 7kk 
k,I k 

= p(vV') 2 + Tr [7  - 72 ] + Tr  [c(*~(] (2b.25) 

from which we see that  p ( ~ r 2 ) =  p(vV.)2 requires both ot = 0 and 72= 7. 

ProoL Since Tr[~,] is finite, it is clear from the form in (2b.5) that  
al though T r [ / ' ]  may  be infinite, which is the case when dim ~ f ' =  oo, we 
have T r [ f ' ( l  - K)]  < oo. Thus,  there is an o r thonormal  basis of  eigen vec- 
tors for f ' ( l - / ' ) .  If  ~o is an eigenvector f o r / ' ( 1 -  F)  of eigenvalue/1, then 
so is F~0 and, since FZq) = Ftp - #~o, it follows that F leaves invariant the 
subspace span{~p, Fq~}, which is at most  two-dimensional.  We conclude 
that  there is an o r thonormal  basis of  eigenvectors for F. 

If tp = f ~ g  is a normalized eigenvector for F of eigenvalue 2, then, by 
(2b.5) and (2b.8), we find that  ~ = ~ ( ~ f  is a normalized eigenvector for F 
of eigenvalue ( 1 - 2 ) .  Thus, we can find a unitary W on Y # ~ '  of the 
form (2a.9) such that  (using the basis ./1, f2 .... for both  copies of  .,Yg) the 
four blocks of  the t ransformed F have the form 

W t F W  = 

/~, 
22 0 

1 --21 
0 1 - 2 z  �9 (2b.26) 

with 0~<2;~<1/2 for i = 1 , 2  ..... Using this and T r [ F ( l - F ) ] < o o ,  we 
obtain Y'~ 2i < oo. 

We shall now prove that  W satisfies the condition of Theorem 2.2, i.e., 
that  Tr [vv*]  < oo and hence that  W corresponds to a Bogoliubov transfor- 
mation ~ on ~ .  Indeed, from (2b.26) we know that  the upper  left block 
of the matrix W * F W  has finite trace, i.e., 

Tr [u t7u  +/~t0~tt/q- utah+ tTt(l --'7)t3] < oo (2b.27) 

Since 0 ~< F~< 1 we have that F 2 ~  F. The upper  left block of this inequality 
reads 72 + ~tct t ~< 7. Thus T r [ ~  t ]  ~< T r [ 7 ]  < oo. By Cauchy-Schwarz  we 
estimate 

Tr  [utTu + ftct*u + u*ct15 + 15'( 1 - )7)f] _ Tr  [6t~3] 

= Tr[u*7 u + ftcttu + u tc t~-  f*~Tv] 

/> - T r [ u u t T ]  - 2 Tr[O*6] i/2 Tr[uutc(c(t ] 1/2 _ T r [ f g t ~ ]  

i> - 2  Tr [  7] - 2 Tr [  6t6] ,/2 Tr [  7] i/2 (2b.28) 
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We conclude from (2b.28) that T r [ O t ~ ] - 2 T r [ S t S ] ~ / 2 T r [ y ] t / z <  oo and 
hence that Tr[vv t ] = Tr[S*9] < co. 

If we prove that the diagonal matrix WtFW is the 1-pdm of a quasi- 
free state 15, then we know that F is the 1-pdm of the state p with 
p(A ) =  15(~g'tA~/'). We may therefore assume that F is itself diagonal of the 
form (2b.26). 

Let Ho be the projection onto the subspace of ~ on which 
E,:;. ,= o d , c ,  = O. 

For each i such that 2; > 0 choose e; to satisfy 

( 1 + exp(ei))-  1 = 2i (2b.29) 

(note that 0~<e~<ov, since 0<2,.~<1/2) and consider the following 
(possibly unbounded) operator H on ~ :  

H= Z eic~ci (2b.30) 
i : ) . i  ~ 0 

We shall now prove that the operator 

G := H o e x p ( - H )  (2b.31) 

has finite trace on ~ and that the state 

p(A ) = T r [ G ]  - '  T r [ A G ]  (2b.32) 

is quasi-free and has F as its 1-pdm. It is easy to see that the trace of G is 

T r [ O ] =  l-I [ l  + e x p ( - - e i ) ] = r - I  ( 1 - 2 , )  - ' < ~ 1 7 6  (2b.33) 
i:2i~O i 

since Z i  2i < oo. 
The operator G looks peculiar, but, by introducing the operator 

H '  =Z~:;.,=o c~ci which commutes with H, we can write the state p as a 
limit of Gibbs states: 

p ( A ) =  lim Z ~ '  Tr[A e x p ( - f H ' - H ) ]  (2b.34) 

It is well known (see ref. 13 for a simple proof) that the Gibbs state for an 
operator of the form Z i  eic~ci is quasi-free. Hence we conclude (by taking 
the limit fl ~ oo) that p is quasi-free. 
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The fact that F is the 1-pdm of p follows from the computation 

p((~  + c,)(c., + c'.)) 

= Tr[G] - '  Tr[(c~ + c,)(c,. + c*,)G] 

= Okra Tr[G]  - t  Tr[c~ c k G] + ,51. Tr[G]  - l  Tr [ctc~ G] 

=I-I (1-- 2i) (b,,.2k(l -- , t , )-  ' l-I ( 1 - 2 i ) - '  +~st. 1-I ( 1 - 2 i )  - t )  
i i : i ~ k  i : i # l  

= 6k,,2k + ft,(1 -- 2t) (2b.35) 

where we have used the fact that expE--e~]=2k(1--2k)  - t  if 2k4:0. 
Finally, p has finite particle number since p(JV)= TrEy]. 

The uniqueness of p follows as in the remark after (2b.8): The 1-pdm 
of a quasi-free state determines the state. II 

We call an operator F admissible if it satisfies the properties in 
Theorem 2.3, i.e., is of the form (2b.5) subject to (2b.8) with Tr[~] < 
and 0 < F~< 1. We then have that: 

F is admissible if and only if it is the 1-pdm of  a generalized 
Hartree-Fock state. 

In the above proof we not only proved the existence of a quasi-free 
state having F as its l-pdm, we also gave the explicit form of p. To make 
this more explicit, we introduce the following notion: 

Quadratic Hamiltonian.  A se!f-adjoint operator H (bounded or 
unbounded) on ~ is said to be a quadratic Harnihonian if the unitary 
operators # ' ( t )  := exp(iHt) are Bogoliubov transformations for all t. 

If H is a quadratic Hamiltonian, there correspond operators W(t) on 
oYd~3.,'V of the form (2a.9) corresponding to the Bogoliubov transforma- 
tions "W(t). Since the anticommutator satisfies 

{c*(h2) + c(hl), exp(iHt)(c*(gl ) + c(g2)) exp( -- iHt) } 

= l ( h ' ) l W ( t ) ( g l ) )  g2 (2b.36) 

it follows that W(t) is a strongly continuous one-parameter group of 
unitaries on dF • oct ~ Hence there is a self-adjoint operator A (bounded or 
unbounded) such that W(t)= exp(iAt). 

The operator A has the block structure 

a 

where a and b are operators on ~ with a t = a  and b r =  -b.  
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We calP the operator A the first quantization of H and we call H a 
second quantization of  A. Notice that from (2b.36) A is determined uniquely 
by H. If H is a bounded operator on ~ ,  then A is bounded on ~ ~ ~ and 
by differentiating (2b.36) we can, in this case, write 

{ct( f12)+c(hl) '[H'c*(g~)+c(g'2)]}=((hh12) A ( g l ) )  l g 2  (2b.38) 

Here we have introduced the commutator  [K, ,  K2] := K, K 2 - K 2 K , .  
The operator H, however, is only determined by A up to addition of 

a multiple of the identity. If A is bounded, we may write the unique second 
quantization H of A satisfying (01 H I 0 ) = 0  in terms of the matrix 
elements of a and b as 

H = ~ auc ~ cj + �89 ~,(buc ~ c] + b~cici) (2b.39) 
i , j  i , j  

If H is a quadratic Hamiltonian and if ~r is a Bogoliubov transfor- 
mation, then ~/g'H~* is also a quadratic Hamiltonian. If H is a second 
quantization of A, then ~g'H~//'* is a second quantization of WA W*, where 
W is the unitary given in (2a.9). 

The proof of Theorem 2.3 implies the following result about the 
structure of quasi-free states. 

2.4 L e m m a .  Let p be a quasi-free state with finite particle number, 
i.e., p(Jl r) < ~ (in terms of  its 1-pdm this means Tr[7]  < ~ ) .  Then there 
exist two commuting quadratic Hamiltonians H and H'  (possibly H =  0 or 
H ' =  O, but not both) such that 

p ( B ) =  lim T r [ e x p ( - f l H ' - H ) ] - ~ T r [ B e x p ( - f l H ' - H ) ]  (2b.40) 

This means that the state p is a product of the ground state (zero- 
temperature state) for H '  and the Gibbs state for H. Thus if H '  =0 ,  p is 
a Gibbs state and if H =  0, p is a pure state. In the next two lemmas we 
discuss quasi-free Gibbs states and quasi-free pure states in more detail. 

2.5. L e m m a .  I f  A is an operator on o,ut~Go.'ff of  the form (2b.37), 
then 

F := (1 + exp(A ))-  ~ (2b.41) 

is of  the form (2b.5) subject to (2b.8). Furthermore, if this I" satisfies 
Tr[7]  < ~ ,  so that it defines a quasi-free state p by Theorem 2.3, then this 
p is given by 

p(B) = Trl-exp( - H ) I  -~ T r [B  exp( - H) ]  (2b.42) 

where H is an), second quantization of  A. 

5 Our terminology is far from being conventional but it is descriptive. 
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Conversely, if  p in (2b.42) is a quasi-free state of finite particle number 
with 1-pdm F, then H is quadratic with f r s t  quantization satisfying (2b.41). 

Proof. Let U be the unitary 

on ~ Y g ' .  Then U A U * = - 4 ,  since A has the form (2b.37). Hence, 
UFU*= 1 -  P, which proves that F is of the form (2b.5) subject to (2b.8). 

If F satisfies Tr[~]  < oo, it follows from the proof of Theorem 2.3 that 
there is a Bogoliubov transformation ~ with corresponding W such that 
the WtFW, which is the 1-pdm of the transformed state p•., is diagonal in 
our chosen basis. We denote by 21,22 .... those eigenvalues of W*FWin  the 
interval [0, 1/2) together with half the eigenvalues equal to 1/2 (if any). 
The other half of the eigenvalues of W*FW are then given by 1 - 2 ~ ,  
1 - 2  2 . . . . .  The operator WtA W is also diagonal with the first half of the 
eigenvalues given by e~, e 2 .... and the second half by - e l ,  - e 2  ..... accord- 
ing to the definition (2b.41). 

Since 

we see that the second quantizations of W*AW are of the form / t ,  = 
Zk ekc~ck+rl,  where r is any real number. Since the Gibbs states are 
independent of r, we see that all the operators /~r define the same Gibbs 
state as the operator in (2b.32), i.e., the state P u .  [As in (2b.42), we are 
referring to Gibbs states with the inverse temperature/3 = 1.] 

Since p,~- is the Gibbs state for/7~, the state p is given by 

p(B) = p ~.('lr = Yr[exp( - / ~ , ) ]  -1 Tr ['#:*B~CV" exp( - / ~ ) ]  (2b.45) 

which agrees with (2b.42) if H = ~ q ~ ' / r  Such an H is, however, a 
second quantization of WW*A WW* = A. 

The converse statement is also a simple consequence of the proof of 
Theorem 2.3. One only has to realize that the state p in (2b.42) uniquely 
determines the operator H. II 

2.6 T h e o r e m .  A quasi-free state p with finite particle number is a 
pure state p(B)=  (~O[ B I~b ) if  and only if  the l-pdm F with Tr[) ' ]  < oo is 
a projection on ~ ~ 9~, i.e., Fz=  F. 

In terms o f f  the vector I~ ) is of the form (2b.13) but this time with 
gl,..., gr, hi, kl .... being orthonormal eigenveetors of ~; the vectors gl,..., gr 
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with eigenvalue 1 and the pair hi, ki := --((i--(2)-1/2othi with eigenvalue (i, 
where 0 < G < 1. 

Proof. Let p be a pure state. Since p is uniquely determined by its 
1-pdm F, we may assume it to be of the form (2b.32). The purity of p, then, 
is equivalent  to G being rank one and hence 2,. = 0 for all i, which is equiv- 
alent to F being a projection. 

Again from the proof  of Theorem 2.3 the diagonal form of f" is 

Hence 

W t F w = ( O  0 01) (2b.46) 

\ar t  afi*J (2b.27) 

and we have ~ = vvt and ct = vtT* = -u6*. Since W t F W  is the 1-pdm of the 
pure state corresponding to the vacuum, F is the 1-pdm of the pure state 
corresponding to I~k)= ' / r  Here ~ is the Bogoliubov transform 
defined by W. The last s tatement of  the lemma now follows by comparison 
with Theorem 2.2. II 

Using this lemma, we can find a basis for af '  @ ~ where the blocks y 
and ~ of F take a particularly simple form when F is a projection. In fact, 
if we choose the basis consisting of g i@0,  l i f O ,  hiO)k~ and Of f )~ ,  009 {,., 
/~@/~ for all i =  1, 2 ..... we find [with c t i = ( G - ~ 2 )  -~/2] 

( ) ( ) 0 ~i and cc = (2b.48) 
= ~i -c~i 0 

- . . " , 

2.7 Lemma. Let p be a pure and quasi-free state of finite particle 
number with 1-pdm I'. Then p ( J V 2 ) < o o  and it is given by (2b.49) with 
given in (2b.5): 

p(JV "2) - p(JV') 2 = 2 Tr[~*~]  (2b.49) 

This equation shows that p is not necessarily a f ixed particle number state. 

ProoL Since p is pure, F is a projection and hence ) , = y 2 +  ac~*, 
which together with (2b.25) implies (2b.49). II 

F rom L e m m a  2.7 we see that a generalized H F  state with 1-pdm F has 
conserved particle number  if and only if the component  r on f '  vanishes. 
We call a generalized H F  state for which this holds a normal state. 
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2.c. The Generalized HF Functional 

In this section we shall introduce the generalized Hartree-Fock 
approximation for a self-adjoint operatopr H on Fock space of the form 

H- - -h+  P (2c.I) 

where 1~ is a quadratic (particle-number-preserving) operator 

f7 = ~. h~c*~c/ (2c.2) 
i , j  

and 1~ is a quartic operator (again particle-number-preserving) 

P = ~  ~ v +* (2c.3) klzmn Ck C I Cn Cm 
k, l, m. t) 

By (2c.2) the operator /~ is defined in terms of matrix elements h~ of 
a self-adjoint operator h on dt ~. The operator h is the restriction of/~ to the 
one-body space ~ ( ~ ) =  ~ ,  i.e., 

hu= (f,.I h [fj)  = (0l cjw~ 10) (2c.4) 

By (2c.3) the operator I 7" is defined in terms of matrix elements Vk+: .... 
of a self-adjoint operator V on ~ | dr% Note that we are not restricting V 
to be an operator on the antisymmetric two-body space ~,~(2)= ~ ^ ~ff. 
The restriction of V to the antisymmetric subspace is equal to the restric- 
tion of P to ..~(z): 

(01 c~ck Vc,,,c. = ~( V.t:.,,, + V~k:,,,,,- V.t:,,,,,- V+k:.,,,) 
1 = ,-:(A ^ f , I  Vt f , ,  ^ f , , )  (2c.5) 

The operators V and h defining P and /~ may be bounded or un- 
bounded. We shall, however, assume that the operator H is bounded 
below. This is the case if, for example, /~ and ~" are bounded below. One 
way to ensure this is to assume that h and V are bounded below by 
(negative) operators of finite trace (it is not enough to assume that h and 
V are bounded below in order to have/~ and P hounded below). 

The expressions (2c.2)-(2c.3) are somewhat formal. A more precise 
definition can be given as follows. On each Wvv) we can, in the obvious 
way, define the s u m  h (N)=)-'~N=I hi of N commuting copies of h and the 
corresponding sum v(N)=~)~<~<j~< N V,~ of N commuting copies of V. 
Then H = ~ N  (h(m+ V (m) H (N). 

In discussing Hamiltonians of the form (2c.I) we have two particular 
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examples in minds. The first is the Hubbard Hamiltonian defined in 
Section 3. The second is the atomic Hamiltonian with o,~ being the square- 
integrable (spinor-valued) function on R 3 and h = - ( h 2 / 2 m ) A -  Z/Ixl- #, 
where # ,<0 is a chemical potential and V=e  2 I x - y l  -~. Both h and V 
are independent of (diagonal in) spin. The Hubbard Hamiltonian is a 
bounded operator (in fact, a finite-dimensional matrix), while the atomic 
H~imiltonian is unbounded but bounded below. [If/~ < 0, then h and V are 
bounded below by operators of finite trace, but if /t =0 ,  h will not be 
bounded below by such an operator (e.g., the negative eigenvalues of 
hydrogen are not summable). This, however, is not a real problem because 
the operator H is still bounded below.] 

For both the Hubbard Hamiltonian and the atomic Hamiltonian we 
shall be interested in the ground state and its energy. The ground state 
is simply the (maybe not unique) state P0 (with finite particle number) for 
which p(H) takes on the smallest possible value--the ground-state 
energy--provided this smallest value is attained for some state at all. 
Otherwise the ground state does not exist. 

If H is unbounded, the expectation p(H) is not necessarily well- 
defined. If, however, H is bounded below, we can define p(H). This is easy 
to see for states that can be written as p(B)=Tr[GB] for some positive 
operator G of finite trace on Fock space (this is not true for all states, but 
we are only interested in states for which it holds). If H is bounded from 
below, we can without loss of generality assume that H is positive. Then 
T r [ G H ]  is, when expanded in the eigenvector basis for G, an infinite sum 
of positive terms. This sum then defines p(H) (possibly to be + oo). 

The expected number of particles in the ground state is p(~'). Since 
both Hamiltonians are particle-number-preserving, there is a ground state 
p with a fixed number of particles, i.e., p(,/I/"2) =p(,A#) 2. The number of 
particles N : = p ( X )  is thus an integer and p is, in fact, a state on ~,ut~u~ 
[i.e., p (H  ~m) = 1 ]. 

Alternatively to specifying a chemical potential/1, we could also have 
specified the number N and then considered the problem on 3't 'cm. The 
equivalence of the two descriptions by Legendre transform (equivalence of 
the grand canonical and canonical ensembles) requires that the ground- 
state energy is a convex function of the particle number. While this is 
believed to be the case, there is, to the best of our knowledge, no rigorous 
proof of this fact in the two models discussed. In the grand canonical pic- 
ture the ground-state energy is a concave function of the chemical poten- 
tial, but as long as we do not know the convexity of the canonical energy 
as a function of N we cannot assert that the two energy functions are 
Legendre transforms of each other. Here we shall mostly work in the grand 
canonical framework, i.e., specify a chemical potential, except at the end of 
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the section, where we shall discuss the canonical picture when V is assumed 
to be positive. 

In addition to the ground-state energy we shall also be interested in 
the grand canonical Gibbs states p(B)= Z-~ Tr [B  exp(- [3H)] .  The Gibbs 
state, however, is not well defined for the atomic Hamiltonian since the 
operator e x p ( - f i l l )  will not have finite trace in this case. 

The object of study in this section is not the real ground states and 
Gibbs states, but rather their (generalized) Hartree-Fock approximations, 
which we shall now define. 

The Hartree-Fock approximation to the ground state is simply the 
generalized Hartree-Fock state with least possible energy. By Theorem 2.3 
there is a one-to-one correspondence between a generalized HF state p and 
its 1-pdm F. We may therefore define the generalized Hartree-Fock energy 
functional, 

g(F)  = p(H) (2c.6) 

on the set of all admissible density matrices. 
The energy of a generalized Hartree-Fock state can be computed in 

terms of the 1-pdm F as follows. The expectation of the quadratic part is 
p(/~) = T r [ h y ] .  In computing the expectation of the quartic part we apply 
(2a.12) and obtain 

p(~=�89 ~ Vk,;,.,,(y.,ky.,--y,.ty.k+Ot~ka., .) (2C.7) 
k . l .m ,n  

The operator G ~2) on Y~'| with matrix elements ~<2) _ x'J mn;k l  ~ ~ m k  ~ n l -  

~,,ay,k+0C~k~,, . has finite trace. In fact, if we choose V = I  in (2c.7), we 
obtain IT"=X(./V " -  1) and Tr[G~Zl]=p(Ar2) -p(Ar) ,  which is finite by 
Lemma 2.7. 

Equation (2c.7) states that p(17") = �89 Tr[  VGI21]. Both Tr[  VG ~211 and 
Tr[hy]  are well-defined since V and h are bounded from below and G ~z~ 
and y are positive operators of finite trace. 

As mentioned after (2a.12), the three terms in (2b.9) are called, respec- 
tively the direct energy, the exchange energy, and the pairing energy. 

We can thus write the HF energy functional as 

g(F)=Tr[hy]+�89 ~ Vk,:,..(y,.k~',.,--?..,y.k+a*~kOt...) (2C.8) 
k . l ,m ,n  

The Hartree-Fock energy is given by 

E Hv := inf{g(F) I / ' i s  an admissible density matrix} (2c.9) 
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As we have proved the one-to-one correspondence between quasi-free 
states and admissible density matrices, (2c.9) is evidently equivalent to 

E Hv : = i n f { p ( H )  I P is a quasi-free state} (2c.9') 

We shall not  discuss, in general, whether  the infimum in (2c.9) is 
attained. For  the H u b b a r d  Hamil tonian,  however,  it is clearly the case that  
the infimum in (2c.9) is attained since the set of admissible density matrices 
is a compact  subset of a finite-dimensional space. In case of the atomic 
Hamiltonian it is also true that  the infimum is attained. This result was 
proved in ref. 24, where it was assumed that ~ = 0, but this follows from 
Theorem2.11 below. A 1-pdm for which the infimum (2c.9) is attained 
defines a HF ground state. 

To define the finite-temperature HF Gibbs state we must introduce the 
entropy of  a quasi-free state: 

S(F)  := - � 8 9 1 8 9  - T r [ F l n  F ]  (2c.10) 

The last equality in (2c.10) holds because F and 1 - F are unitarily equiv- 
alent (cf. proof  of L e m m a  2.5) and F has real eigenvalues. Notice that  by 
Theorem 2.6, S(F) = 0 if and only if F is the l-pdm of a pure state. 

We define the Hartree-Fock pressure functional ~ at inverse tem- 
perature  /3 as 

- ~ (  r )  = g ( r )  - / 3 - ' s ( r )  (2c.11 ) 

The Hartree-Fock pressure is defined by 

~HV(fl) = sup{~#(F)  I F i s  an admissible density matrix} (2c.12) 

As explained above, we only consider positive temperature  in case of 
the H u b b a r d  Hamil tonian  and as for the energy it is then clear that  the 
supremum is attained. A H F  Gibbs state is defined by a 1-pdm maximizing 
(2c.11). 

In the next l emma we show that the H F  energy gives an upper  bound 
to the true energy and the H F  pressure gives a lower bound to the true 
pressure. 

2.8 Theorem. We have the inequality 

E Hv >t E ~ := inf p (H)  (2c.13) 
P 

where the infimum is over all states p (not just HF states). I f  h and I~ are 
bounded 

~pHV(fl) ~< # Q  := fl-~ In Tr  [exp( - f i l l ) ]  (2c.14) 
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Proof. The inequality (2c.13) is obvious since E nv is defined accord- 
ing to (2c.9) as an infimum over a restricted class of states, namely the 
generalized HF states. 

Inequality (2c.14) is more complicated. The aim is to show that for 
any generalized HF state p with l-pdm F we have 

e x p ( -  tip(H) + S(F)) <<. Tr [ e x p ( -  flH)] (2c.15) 

According to Lemma 2.4, any generalized HF state is a limit (in the 
sense of convergence of expectation values of bounded operators) of quasi- 
free Gibbs states. Moreover, it is clear that the entropies of the approx- 
imating Gibbs states are greater than the entropy of the limiting state. We 
can therefore assume that the quasi-free state p in (2c.15) is a Gibbs state. 

Since p is a Gibbs state, we can define an operator A on ~ ~ ~e as 
in (2b.41). This operator is then the first quantization of a quadratic 
operator hA and 

p(B)=Tr[exp ( - thA)] - '  Tr[B  exp(-- thA)]  (2c.16) 

To specify h A uniquely we assume that (01 hA 10) =0.  
By the Peierls-Bogoliubov inequality (32~ we infer 

Tr [exp( - t H ) ]  = Tr [exp( - t(hA + H-- hA)] 

>.-- T r [ e x p ( -  flhA)] e x p ( - t p ( H - h A ) )  (2c.17) 

The inequality (2c.14) follows if we can prove 

S(F) = tip(hA) + In {Tr [exp(--flhA)] } (2c.18) 

By diagonalizing the operator A as in the proof of Lemma 2.5, we find 

Tr [exp( - f lhA)]  =I-I  (1 + exp ( - t ek )}  (2c.19) 
k 

where el, e2 .... again denote the positive eigenvalues of A and half the zero 
eigenvalues (if any). We also find 

p(hA) = Tr[exp( -f lhA)]  - l  Tr[hA exp( --flhA)] = ~ ek[1 + exp(flek)] -~ 
k 

(2c.20) 

Using (2b.41), (2c.19), and (2c.20), we finally obtain that the right side of 
(2c.18) is 

ln[1 + exp(tek)]  + ~ f l e k {  [1 + exp(flek) ] - 1  _ 1 } 
k k 

= �89 Tr [  - ln(F) - (I - F) ln(F -~ - I )] (2c.21) 

which is exactly S(F). | 
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It is always possible to choose the quantum ground state to be a pure 
state. The same is true in generalized H F  theory. This follows from the next 
lemma when compared with Theorem 2.6. 

2.9 T h e o r e m .  The infimum of s over all admissible density matrices 
agrees with the infimum over all admissible projections, i.e., 

E Hr = inf{ s  I F is admissible and F 2 = F} (2c.22) 

Proof. We shall show that for any admissible F there is a projection 
Fo such that 8(Fo)~< g(F).  For  this purpose it suffices to approximate h 
and V by bounded operators--for  which there is obviously no difficulty 
with convergence of the following sums. 

For any admissible F, as in the proof of Theorem 2.3, we can find a 
Bogoliubov transformation ~g" with corresponding W such that WtFW is 
diagonal. If F is the 1-pdm of the state p, then W t F W  is the 1-pdm of the 
transformed state p,~-. We have the relation 8 ( F ) =  p(H)= p,~(~ftH~lg'). 
The transformed Hamiltonian ~/~*HYr r is also a sum of a quadratic 
operator ~/r162 and a quartic operator ~,g'tlT'~, but these are not 
necessarily number-preserving. If we (anti)commute all c t to the left (nor- 
mal ordering), we obtain 

~ *  H~: = E hoct, cJ + I- E v~~ ,:.,,, ckt c~ c.c,,, + xI + R 
i, j k/;  m n  

(2c.23) 

where hij and F'k~:.,. are new matrix elements and x is some constant. The 
operator R contains all particle-nonconserving terms of the form 

cc, c'c*, cccc, ctccc, c*ctctc, ctctc*c * (2c.24) 

Since p~,-(R)= 0, we obtain 

r  = p~,-(Yr'n~) = ,r + y. ~,,,z, + �89 y'. ( P~,:~,- P~,:,~) ,L,~, (2c.25) 
i k l  

where 21,22 ..... are as usual the eigenvalues of F smaller than 1/2. 
The important fact to observe about the expression in (2c.25) is that, 

although it is a quadratic form in 21,22 ..... it is linear in each variable. 
Hence Og(F)/O2j is independent of 2j. Therefore, we do not increase the 
energy expectation by replacing 2j [tpj ) (~0j[ + (1 - 2i) [ U~j ) ( U(oj[ in F by 
I~0j) (tpjl in case 38(F)/O2j < 0 and by IU~j)(  U(ojl otherwise. Proceeding 
this way, we arrive at a 1-pdm Fo with energy no greater than before and 
with all eigenvalues either 0 or 1. This means that Fo is a projection. II 

822/76/I-2-3 
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If p is a generalized HF  ground state for H, we define a corresponding 
HF mean-field Hamiltonian. It is the following quadratic Hamiltonian 
written in terms of the blocks ~ and ~ of the 1-pdm F of p: 

Vk/:mn[]) kmC l C,~ - -  ]~mlCkCn Jr ])nkCl Cm all- ]) nlCkCm 
i,j kl;nm 

+ + (2C26) 

A HF ground state of H is self-consistent in the sense given in the next 
lemma. 

2.10 I . e m m a .  I f  p is a HF ground state for the Hamihionian H, i.e., 
a HF minimizer, then p is a true (not just HF) ground state for the 
Hamiltonian Hp. 

Proof. We must show that p(Hp) <<. p'(Hp) for any state p'  with finite 
particle number. 

From the 1-pdm F' of p '  and the 1-pdm F of p we can for 0~< t~< 1 
construct a new 1-pdm F, = ( 1 -  t )F+ tF'. Then F, is admissible and since 
F is a minimizer for r we have 

0 <~ dr ,=o = p'( Hp) - p( Hp) (2c.27) 

which proves the claim. It is important here that since Hp is quadratic, 
p'(H,) depends only on the 1-pdm of p'. II 

Although we can always find a state with fixed particle number among 
the quantum ground states for the Hamiltonian H, this may not be the case 
for the generalized HF  ground states, as discussed in the introduction (and 
proved for the attractive Hubbard Hamiltonian in Section 3). Here there 
need not be a normal ground state. 

It is often stated in the literature that if the HF  ground state is not a 
normal state (i.e., it is a BCS state), the potential V must have a negative 
component. It is now very easy to state this precisely. 

2.11 T h e o r e m ,  I f  the operator V is positive (semi)definite on 
| ~ ,  then 

E HF = inf{~'(F) ] F is admissible and normal, i.e., ~ = 0} (2c.28) 

Moreover, if  V is strictly positive (i.e., positive definite), then any HF ground 
state ( i f  it exists) must be a normal state. Likewise, we have for the pressure 

~HV(fl) = sup{~tj(F) ( r i s  admissible andnormal} (2c.29) 
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Proof. That  V is positive means that  for all g ~ ~r | 3~t ~ we have 

2 Vkt:mngktg",n~O (2c.30) 
kl;mn 

Strict positivity means that  if g :/: 0, then (2c.30) is a strict inequality. The 
pairing energy is exactly of  the form (2c.30); hence 

Vkl;mn t C</k~.,.= ~ Vkl:,,,,,~klCt.,.>~O (2C.31) 
k l ;  mn kl: mn 

Assume F is admissible with nonzero ~ and form a new opera tor  r by 
replacing ct by zero. It is clear that  ~ is still admissible and by (2c.31) that  
~'(P) is (strictly) smaller than ~ ( F )  if V is (strictly) positive. To  prove the 
result on the pressure we notice that  the 1-pdm F' obtained by changing 
ct to -~ t  is unitarily equivalent to F. Hence, since the entropy is a concave 
function, we find 

s ( r ) = s ( k r + + r ' ) > ~ + s ( r ) + ~ s ( r ' ) = s ( r )  I (2c.32) 

In the remainder  of  this section we shall specialize to the case of  
positive V and discuss the canonical picture. Thus, instead of a chemical 
potential  we now fix the value T r [ y ]  = N. Since we have ct = 0, it is enough 
to consider the component  y of F. 

The discussion is of special interest in the atomic case where the 
potential  V is strictly positive. 

There is a version of Theorem 2.9 for the canonical case of fixed par-  
ticle number  N. We state it below without proof. It is, in fact, more  difficult 
to prove than Theorem 2.9 because in deforming 7 to a projection we have 
to keep T r [ 7 ]  = N. The proof  was first given in ref. 18 (see ref. 6 for a 
simple proof). 

2.12 Theorem (Variational principle). I f  V is positive, then 

EHF(N) := inf{~(y) I ~ is admissible with T r [ ~ ]  = N} 

= inf{~(),) I ~ is an admissible projection with Tr[) , ]  = N ]  } 

(2c.33) 

Moreover, if  V is strict/), positive, then any HF minimizer must be a 
projection. 

Combining  Theorem 2.11 and Theorem 2.12, we see that  a H F  ground 
state/9 for a system with strictly positive V is not only particle-conserving 
(ct = 0 ) ,  but, in fact, has fixed particle number,  i.e., p(,/ff2) =p(,/I/')2. 
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Theorem 2.12 is useful in many cases for obtaining upper bounds to 
the Hartree-Fock energy, E Hr, and hence an upper bound to the true 
quantum energy E Q. It allows one to deal conveniently with what is some- 
times called the "orthogonality problem." Take any matrix y satisfying 
0 ~< y <~ 1 (as an operator) and Tr y = N, and compute the one-body energy 

E,(y) = Tr yh = ~ yo.hj~ (2c.34) 
i,j 

and the two-body energy 

E2(Y)=�89 ~ V,l:,,,,(ym, y,,~-y,.tY.,) (2c.35) 
k,l,m,n 

Then 

E Q <~ E Hv <~ El(y)  + E2(y) (2c.36) 

The important point here is that the matrix YmkYnl--YmlYnk is not, in 
general, the two-body reduced density matrix of any N-body density matrix 
unless 7 comes from a Slater determinant, i.e., yg=~=u=~ ~07~p~, with 
q~l ..... ~pN being N orthonormal functions. Nevertheless, (2c.36) continues to 
be true. 

Contrary to the proof of Theorem 2.9, the proof of Lemma 2.10 is 
unchanged in the canonical case (because the 1-pdm y , = ( 1 - t ) y + t y '  
automatically satisfies Tr[y , ]  = N if Tr [y ]  = N and Tr[7 ' ]  = N). 

2.13 L e m m a .  If V is positive and i f  p is a H F  ground state for  the 
Hamiltonian H under the constraint p(~4/') = N, then p is a true ground state 
for  the Hamiltonian l ip under the same constraint. 

The mean-field Hamiltonian has a simpler form when restricted to 
fixed particle number: 

Hp : :  2 t I h o ' c i c j - } ' 5  E t "t t V,I ..... [yk,.c I c,, + y,,iCkC,,,-- y,uC~C,, -- y,,~C~ C,,] 
i,j kl;mn 

(2c.37) 

which is simply a (number-preserving) independent particle Hamiltonian. 
When V is strictly positive we can prove a much stronger result than 

Lemma 2.13. Namely, not only is a HF ground state p for H a true ground 
state for the mean-field operator H , ,  but it is the unique ground state for 
Hp satisfying the constraint p ( X ) =  N. 

This uniqueness result is equivalent to the striking statement made in 
the introduction, that no degenerate energy levels o f  H ,  ( i f  they exist)  can 
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be only partially filled in the HF state. We emphasize again how contra-  
dictory this is to what  is taught  in elementary chemistry courses. We learn 
in the theory of chemical binding how unpaired electrons in separate a toms 
can pair  up and create a strongly bound molecule. The concept of unpaired 
electrons relies of course essentially on the independent orbital picture of 
H F  theory. Wha t  we prove is that  there are no unpaired electrons in 
unrestricted H F  theory. 

The obvious question is of course: But what then has happened to the 
spin degeneracy? The answer is, as already discussed, that  there may not 
be spin degeneracy in H F  theory, because even the spin symmetry  can be 
broken. Likewise for the angular  m o m e n t u m  degeneracy; there may  not be 
spherical symmetry.  

The following is the theorem that  there are no unfilled shells. It was 
proved by M. Loss and the authors. (3) Since the proof  is very short we 
repeat it here. 

2.14 Theorem (Shells are a lways  elosed). Assume that the 
two-body potential V in the Hamiltonian H is strictly positive (as in the 
Coulomb case). I f  p is a HF ground state (a Slater determinant state) for 
H, i.e., a HF minimizer subject to the constraint p(~A r) < N, then p is the 
unique ground state of  the mean-field operator Hp satisfying the constraint 
p ( Y )  = N. 

ProoL From Theorem 2.12 we know that the 1-pdm ~ of p is an 
N-dimensional  projection, which we can write 

N 

~'= ~ I g j ) ( & l  (2c.38) 
j = l  

where gl ,  g2 .... are N or thonormal  eigenvectors of ),. Since p is a ground 
state for Hp we can assume that  g~, gz,.., are eigenvectors of Hp. 

If there is another  ground state with the same number  of electrons, 
there must  be a degenerate level containing a vector from y, say g~r and 
at the same time a normalized eigenvector g' which is not in ~,, i.e., with 
7 g ' =  0. We can then define a new N-dimensional  projection by 

N - - I  

Y'= [g ' ) (g ' l  + ~ I & ) ( g j l  (2c.39) 

The H F  state p '  with l-pdm ~' is then also a ground state for Hp, i.e., 
p(Hp) = p'(np).  

Since y i~ a minimizer for the H F  functional we have 

0 ~< r  e('},) -- ( p ' ( H p ) -  p(np))  

= ~ v  . . . .  _ k~:,,,,,[()' -- )' ),,,k (~' -- )' ) ,~ - - (~- -~  ) ,k(~--) '  ) , , ]  (2C.40) 
kl;mn 
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The operator 7--7'=[gN)(gNl--lg')(g'l .  Hence, since V is strictly 
positive, 

1 t r Y. v,,:~[(~-~')~(~-~ ).,-(~-~ ).*(~--~')m,] 
kl;nm 

= (gN| V ]gN| (g'| V lg ' |174 V lgN| 

-- (g'| V Ig'| (gN| V IgN|174 V Ig'| 

+ (gN| V[g'|  (g'| VIgN| 

= ( g u A g ' l  VIg'AgN)<O (2C.41) 

which contradicts (2c.40). II 

To illustrate this result, let us consider the simple, but not altogether 
trivial example of N =  1 for the atomic Hamiltonian. In this case the HF 
ground-state energy is in fact the true ground-state energy. It is simply the 

- -  1 2 ground-state energy of hydrogen (with nuclear charge Z), i.e., zZ in 
our units. Owing to the spin degeneracy, the ground state is doubly 
degenerate. We consider the spin-up ground state and write it qJ = I~p(x)T ). 
Here we have used the hydrogen ground-state wave function (0(x)= 
CZ 3/2 e x p ( - Z  Ixl). It is important to realize that the mean-field operator 
corresponding to ~b is not just the hydrogen operator, but rather the 
operator H~ that acts on a general ~b'=lr with a = T  or a = ~  
according to 

H~,icp'(x)a)= - A - i x  [ Icp(y)21x-yl- 'dy  Icp'(x)a) 

-6~ ~ r q~'(y) Ix-Y1-1 dy Icp(x)a) (2c.42) 

Notice that He is spin-dependent--it does not commute with spin rotations. 
The mean-field operator and the hydrogen operator agree on their 

common ground state qJ, i.e., 

, 
H~0 ~b = ~O= - ~ Z 2 r  (2c.43) 

On the other ground state for hydrogen, namely, IcJ,) we find, however, 

(cpl IH, loP+)=(q~ll - A - ~ - ~  Iq~l) Iq~(x)2cp(Y) 2 Yl dy 

= _ I  Z2 + cZ (2c.44) 
4 
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Thus the mean-field operator induces a gap in the energy between the 
two degenerate ground states of hydrogen. 

Theorem 2.14 states that this is not only true for the state Iq~), but, 
in fact, the ground state for He, is unique. More importantly, by 
Theorem 2.14 this is not particular to the case N =  1. 

3. THE GENERALIZED HF T H E O R Y  FOR THE H U B B A R D  
M O D E L  W I T H  ATTRACTIVE  INTERACTION 

3.a. Definit ions 

In this section the generalized HF theory will be applied to the 
Hubbard model with attractive interaction. Our main result (Theorem 3.12) 
in Section 3.e will be that the HF ground state and positive-temperature 
Gibbs state are unique, modulo global gauge transformations. First, we 
recall the definition of the Hubbard model. Let A be a finite lattice, i.e., a 
finite collection of points, and let IAI be the number of these points. The 
one-particle Hilbert space ~,~ is the 2 I A I-dimensional space of spinor-valued 
functions on A, i.e., the set of complex-valued functions on A x { - 1, 1 }. 
The value of such a function at (y, r) (with y e A ,  r e  { - 1 ,  1}) is f ( y ,  r) 
and the inner product is ( f l g ) = ~ . y . , f ( y , r ) g ( y , r ) .  A canonical 
orthonormal basis in ~ is given by the delta functions, which we denote 
by Lx, tr). Thus, Ix, t r )~ (~ '  is the function f,.~(y, r ) :  ~i.,, ,.5,.~. We define 
our complex conjugation in this basis. In the Fock space ~ corresponding 

t We often use the abbreviations y := +1 to ~ we refer to c*(Ix, a) )  as c,.o. 
and ~ := -1 .  An orthonormal basis in ,~ is given by {c~,.o~ ...c]w., ~ 10>1 
(xi, try)v~ (xj, aj) if i ~ j } ,  which implies that ,~ is 41At-dimensional. 

The Hubbard Hamiltonian for negative coupling is 

H ~ t 1 t 1 = txyCx.aCy.a__ ~., t __  _ Ux(c~.rcx. T ~)(c_~.~c;,.~-~) (3a.1) 
: < . ) ' e A  x ~ A  

a 

The second term in H_ is an attractive interaction among the electrons 
with position-dependent coupling -U. , .<  0. (Our notation here and else- 
where is that U.,. >/0.) Other authors frequently replace the last two factors 
in (3a.1) by t t (c~tc.~t)(c.,.~cx~), but we prefer our form (also used in ref. 23) 
because it preserves hole-particle symmetry; if Ux is independent of x, the 
distinction is unimportant. In the first term, the IAI • IAI self-adjoint 
matrix t =  {t.~>.}.~..,.~A is called the hopping matrix. Since we shall later 
include a chemical potential, we can and will assume without loss of 
generality that T r [ t ]  = 0. We do not assume txx = 0, but where t is bipar- 
tite (defined below) the condition t.,..,. = 0 is automatic. We emphasize that 
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up to this point A was an arbitrary set and need not have any topological 
structure. It is the structure of t, linking different points in A, that makes 
the embedding of A into R d sometimes useful. Indeed, in the original model 
introduced by Hubbard,  "s) Kanamori,  (~6) and Gutzwiller (t4~ A is a finite 
cube of lattice points in Z a and txy :=z  when x and y are nearest 
neighbors, and t x y = O  otherwise. The imposition of periodic boundary 
conditions makes A into a d-dimensional discrete torus on which t is 
translation invariant. Let us remark that, except in Section 3.g, we shall 
neither assume that t is translation invariant nor that Ux is constant. 
However, connectedness, reality, and bipartiteness of t will play an impor- 
tant role in our analysis. These notions can be conveniently characterized 
by means of path. A path is an ordered sequence {x~, x2,..., x,} of points 
in A such that tx~x~, G2x,,..., tx,_~, are all nonvanishing. We will always 
assume t to be connected, i.e., any two points x, y ~ A are linked by a path 
{x,x~.,...,x,,y}. We say t is real if txyeR for all x, yeA .  For real t self- 
adjointness implies that txe = tyx "= tyx" For every closed path 
{x~, x~ ..... x , ,  x~} the product t~,~2t~:~3.., t~.x, obviously yields a real num- 
ber provided t is real. Conversely, if G,~2""t~,~ is real for every closed 
path, then t is unitarily equivalent to some real hopping matrix t ' =  Wt W*, 
where W is a gauge transformation (see ref. 22, Lemma 2.1). Hence, unless 
there is at least one closed path for which t~,x2...tx,,,~ is not real, we may 
as well assume that t is real. 

The matrix t is said to be bipartite if there are two disjoint subsets 
A , B _ A  with A w B = A  such that txy=O whenever both x , y ~ A  or 
x, y e B. Evidently, t is bipartite if and only if all closed paths contain an 
even number of points. 

One important property of a bipartite t is that it is unitarily equivalent 
to - t .  Indeed, defining the unitary IAI • IAI matrix ( - 1 ) ~ =  [ ( -  1)"]-~ = 
[ ( -  l)X] f by 

(-1)-":= ~ Ix)(xl- ~ lx)(xl 
x E A  x E B  

(3a.2) 

one easily checks that 

( - 1 )  ~ t ( -  1 y =  - t  (3a.3) 

If it is unambigously clear from the context what is meant, we will use the 
same symbol ( - I )x to denote the function which takes the value 1 on the 
A sublattice and - 1  on the B sublattice. The Dirac notation is used in 
(3a.2), whereby lop )(q~l denotes the projection onto a normalized vector ~0. 
The vector x is here the delta function fix at x ~ A in the space of complex- 
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valued functions ~ on A (not A x { T, ~ } ). Let us now make a few remarks 
about the different Hilbert spaces we will encounter in what follows. We 
start with ,gilA. Mathematically we may view the one-particle Hilbert space 

as 

~e = ~xeA 0 ~e A = C2 | o,,~ (3a.4) 

andl consequently, the space on which the l-pdm are defined as 

A'~ ~),,~ = C4 | ~ (3a.5) 

[We wrote equalities in (3a.4) and (3a.5) despite of our awareness that an 
isomorphism would have been mathematically more appropriate.] It is 
thus clear that operators on ~ = ~r ~ can be written as 2 x 2 matrices 
with operators on ~ as entries and, likewise, operators on ~ 0 ) ~  as 
4 x 4 matrices with operators on ~ as entries. The usual conventions for 
matrix algebras are understood and, in particular, 

(mll ml2~ :=(qmll qm~2~ (3a.6) 

q km2t m22] kqm21 qm22/ 

where q and mo. are complex numbers or operators on ,"r and likewise for 
4 x 4 matrices. It will often be convenient for us to change between the 
Hilbert spaces ~ ,  ,Jr and W 0)~r and to take traces over these various 
spaces. To simplify notation we shall use a common symbol, Tr, for these 
traces; the Hilbert space in question will be evident from the operator 
whose trace is being computed. Likewise, we shall denote the identity 
operator on these different spaces by the common symbol 1. It will always 
be clear from the context which identity we are refering to. 

We are now in a position to write down the pressure functional for the 
Hubbard model. We choose to define the 1-pdm in terms of the ortho- 
normal basis of delta functions Ix, a ) .  Hence, the energy expectation for a 
1-pdm 

F Y a 0~< = ( a  t 1 _ ~ ) ~ < 1  

is given by 

g ( F ) = T r [ t ~ , ] -  ~ U,.{[<xTI~,I xT>-�89 x s 1 8 9  
x ~ A  

-I(xTlyl xl  >12 + l<x T l~l xJ, )l 2} 

Here, we identified t with the operator (~ o) on ,g,~. 

(3a.7) 
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The thermodynamic pressure of F (actually, the pressure multiplied by 
the "volume") is given by (with fl = 1/kBoltzman n T) 

--:#,u(F) = g(  F) - f l -  ' S( F) - #N( F) 

= g( / ' )+ �89 Tr[Fln r +  ( 1 - / - )  I n ( l -  r ) ] -  u Tr[~] (3a.8) 

We have here introduced the chemical potential/~. We could equivalently 
have replaced the Hamiltonian H by H_  - p  Jr', where Y is the particle 
number operator. Also we have introduced the notation N(F) := Tr[),]  for 
the particle number expectation in the state described by F. 

Our aim is to characterize the set of maximizing 1-pdm's for the 
pressure (which we typically denote by F0) as explicitly as possible and to 
determine the pressure ~'(fl,/~) of the system, i.e., 

.(:,.) := max l o r= (; , ::) I} (3a.9) 

A priori, the max in (3a.9) should be replaced by supremum, but, since the 
underlying Hilbert space is finite-dimensional, the existence of at least one 
maximizing 1-pdm is assured. 

3.b. Linearization of the Pressure Functional 

As a first illustration of the notation introduced above, a 1-pdm F as 
an operator on C4~)~A is written as 

where 

YT 7,  Ot-T 
~:, ~,~ - o c ,  ~ c~ 

r = ~  -~, 1-:T :, (3b.l) 

(x[ y~ lY) := (x,  ~l Y lY, a ) ,  (xl  y .  [Y) := (x,  TI Y lY, +), 
(xl  0~ [y )  := (x,  o" I ~t lY, a ) ,  and (xl  ct. ]y )  := (x,  1"1 at lY, +). Now, 
observe that g (F)  depends neither on ct T nor on ~1, and that g (F)  would 
be lowered if we were allowed to replace y .  by O. Indeed, as the following 
lemma shows, a restriction of our attention to the 1-dpm with a T, cq, and 

_ r is justified. Such ~. all equal to zero and, moreover, y~ = y~ and c t . -  ct. 
matrices are of the form (with empty spaces denoting zeros) 

F=( ?' 
or. ~ t 

where ~' =),'* and ct ' r= e '. 

~t __0t.t 0ts 

_~ , t  1 - - 7  ) (3b.2) 

1 - 7  
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3.1 Lemma. For all fl > 0 (including fl = oo) and all It we have 

- ~'(fl, It) = min{ -~a.u(F) I Foftheforrn (3b.2) andsatisfying 0 <~ F<~ I } 

Proof. Define two orthogonal projections on ~ by (o) ( ) 
1 p : =  0 

P : =  1 ' 0 

0 1 

(3b.3) 

Clearly, PP  = 0 and P + P = 1. Observe that for any l-pdm F written as 

~'t -c~.  (3b.4) 
-~** l - ~  T 

1 -'7~ 

in (3b.1), we have 

/ 

:= P I P  + PFP = (~t  P 
\ 

This operator r is also of the desired form (3b.1). Moreover, 0 ~ < r =  
P I P  + P F P  ~< P + _~ = 1 and hence P is a 1-pdm. As remarked above, 
8 (F)  ~< g (F)  and N ( r ) =  N(F). It remains to show that -S (F)~<  -S(F) .  
We recall that A~.-~Tr{f(A)} is a concave function of the self-adjoint 
operator A if f :  R--*R is concave, i.e., f (2x+(1-2)y)>>.2 f (x )+ 
( 1 - 2 ) f ( y )  for all x ,y  and all 0~<2~<1. Applying this to f ( x ) : =  
x In x + ( 1 -  x ) I n ( 1 -  x), we observe that S(F) is concave in F, 

(3b.5) s(�89 + �89 >t �89 + ~sIr~) 

for all l-pdm Fi and F2. We evaluate (3b.5) on FI : = F  and F2 :=  
( P - P )  F ( P - P ) ,  the latter being a 1-pdm since P - P  is unitary and 
preserves the form (3b.1). But, using the unitarity of P - P again, (3b.5) 
yields 

S(F) = S( �89 + �89 >1 �89 + �89 - P) F(P - P)) = S(F) (3b.6) 

Hence, we may restrict the variation to 1-pdm r of the form (3b.4). 
Moreover, defining the unitary (Ol 0) I 0 

W= 0 

- 1  

(3b.7) 
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we observe WFW* coincides with r except that Yr and y~ are inter- 
r Hence, changed, as are ~,  and ~,. 

/" := �89 �89 w P w '  = ( ~' 
\ 

�9 ~' _ ~ '  ~'  

_ & t  l - - y '  ) (3b.8) 

1 - ~ '  

I T where y' := �89 + Y, ) and ot' := ,:(0t, + 0%). 
As before, concavity of S implies 

s(P)=s(�89189 ~ ' ~S(F) + 5S(WFW*) = S ( r )  (3b.9) 

with equality if and only if/~ = F. We have N(F)= N(/') and 

8(F)-oa( /" )  =)-" U,.{al-[(xl Yl Ix> + (xl Yl Ix> - 1-l~- 
x 

- [ ( x l Y T I x ) - � 8 9  l x ) - � 8 9  >/0 (3b.10) 

with equality if and only if (xl YT I x ) =  (xl ) ' t  Ix) for all x e A .  | 

Thanks to Lemma 3.1 we may now restrict ourselves to l-pdm of the 
form (3b.2) for which the 4 •  matrix formalism is clearly redundant. 
Indeed, introducing the unitary operator ( oo 

y : =  0 0 
1 0 

0 - 1  

(3b.l l)  

on ~ ~3 ,,~, one easily checks that F in (3b.2) becomes 

)( ) YFY* = ~'* l - f , '  F' 
y'  ~ '  = :  F '  

~'* 1 - ~ '  

(3b.12) 

Although it seems that the conditions that F be a 1-pdm on Jr g are 
equivalent to the conditions for F '  to be a l-pdm on ~ q ) ~ ,  there is 
one important difference. We must require F '  to satisfy 0 ~< F '  ~< 1 and to 
be of the form 

e 'f  1-77' (3b.13) 
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with 

(~')* = ~', a'r=a' (3b.14) 

Because of this difference we will distinguish between ~ +,,W A and YC, 
even though they are isomorphic. Physically, ~ '  is the space of spin-up and 
spin-down particles, whereas the action of Y shows that ~ + ~ ,  on 
which F '  is defined, is rather the space of spin-up particles and spin-down 
holes. 

We shall denote the projection operator in ~ @ ~ which projects 
onto (functions nonvanishing only at) the site xeA  by Ix. The diagonal 
part of a 1-pdm F' is denoted by 

r . : : lxr ,  l:[r',(x) : ' (x)  "~1~ (3b.15) 
�9 \ ~ ( x )  1 - y ' ( x ) )  " 

where y ' (x) :=  <xl ~' Ix> and 0t'(x):= <xl ~' Ix>. Note that the product of 
any two operators on ~ ~ of the form A(x) Ix and B(x) I x, where A 
and B are 2 x 2  matrices as in (3b.15), is given by the operator 
(A(x) B(x)) 14. According to this rule, one easily checks that the trace on 
Y(z �9 ~ of F~ satisfies 

I Tr [F.~ 2 ] = 7'(x) 2 + I~'(x)l z + I -  ~,'(x) 

= [~'(x) - I]  2 + [a'(x)[ 2 + �88 (3b.16) 

By means of (3b.16) we may rewrite the pressure functional (3a.8) as 

--~B,~(F') := - -~ , , (F )  = 2 TrEt7] - I ~. V.,,(Tr [F.[ -2 ] + I) - 2/~ Tr[? ' ]  
x 

+/~ ' T r [F '  In F '  + (1 - F ' )  ln(l - F ' ) ]  

(3b.17) 

Finally, we embed the hopping matrix into the 2 x 2 matrix formalism. 
We define for any real number ). 

T ~ : = ( t - 2  - ( [ - 2 ) )  (3b.18) 

With this definition we obtain 

ITr[  T) F'] = Tr[tT'] -- 2 Tr[~,'] + 12 IAI (3b.19) 
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and, hence, 

- ~ # , , ( F ' )  = T r [ T , F ' ]  - �89 Y" U.,. T r [ F  "2] 
X 

+ # - ~  T r [ r '  In _r' + ( 1 -  r ' ) l n ( l - F ' ) ]  +�88 Ux- .  IAI 
x 

(3b.20) 

We wrewrite F'~ as 

- 2  - 1  Ix+ 8'(x) " 

(3b.21) 

The cross terms in F "2 are traceless, which implies that 

Tr[ r.'~ 2 ] = T r [ ( r "  - �89 2] + �88 Tr[ 1~] 

= T r [ ( F ~ -  i , ~ (3b.22) �9 i lx ) - ]  + 

Using (3b.22), we find that (3b.20) becomes 

- : 'p. ,(F')  = Tr[  T , F ' ]  - �89 ~ U., Tr [(FI, - �89 
x 

- # I A I + f - ~ T r [ F ' l n F ' + ( I - F ' ) I n ( I - F ' ) ]  (3b.23) 

We associate a multiplication operator UD : = Z x  U.~D.,I., with any 
real function d(x) and complex function 6(x) by 

D~ \6--~ -d (x ) /  (3b.24) 

Notice that D~ has the same form as F '  x -~:1 , .  The operator UD is really 
a matrix-valued potential which will enable us to linearize the quadratic 
trace in (3b.23) by means of the identity 

- T r [ ( F "  - �89 lx) 2 ] = min{ - 2  Tr[ D;,(FI, - �89 + Tr[D~] } 
d,,~ 

=min{ - 2  T r [ O x F "  ] + Tr iO2]  ) (3b.25) 
d,,~ 

Indeed it is possible to convert the variation over 1-pdm's in (3a.9) into a 
variation over all matrix-valued potentials D, which we will show by means 
of the following lemma. 
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3.2. Lemma.  Let D be any matrix-valued potential as in (3b.24), Q 
a self-adjoint operator on ;gt~ (~ 9f~A, and V the unitary given by 

g : = ( O  1 10) (3b.26) 

Suppose that F is an odd real-valued function, i.e., F ix ]  = - F [  - x ] .  Then 
r defined by 

fl" l . _ _  . -  F I T ,  - UD] + Q - VQV* (3b.27) 

fulfills (3b.13), (3b.14). 

Proof. It is easily checked that VT, V* = - T u  and VUDV ~ = -U D .  
Then by the spectral theorem, 

V(I ' - �89  V * = F [ V ( T  u -  UD) V*] + V Q V * - Q  

= F [  - ( T .  - U D ) ]  - ( Q  - VQV i) 

= - (F[T ,  - UD] + Q - VQV*) 

= ( F -  �89 (3b.28) 

which is equivalent to (3b.13) and (3b.14). II 

3.3 T h e o r e m  (Positive temperature pressure). For all 0 < [3 < oo 
and all I~ we can write the pressure ~(fl,  p) as the following variation over 
the functions d and 6: 

- : ( f l ,  la)=min~#, , (d ,  6 ) - ( Z f l - ' l n 2 + # ) ] A I  (3b.29) 
d , 6  

where 

~lp, u(d, 5):=~lp, u(D):= - f l - ' T r [ l n c o s h ~ ( T u - U D ) l + ~  U.~ Tr[D~] 

(3b.30) 

I f  a potential D minimizes ~lt~.u, then the operator 

F' = (1 + exp[fl(T, - UD)]) -~ (3b.31) 

is a minimizer for (3b.23) (i.e., defines a HF Gibbs state) and satisfies the 
consistency equation 

F~ = (Dr + �89 x (3b.32) 
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Conversely, i f  F'  is a minimizer for (3b.23), then the potential D defined by 
(3b.32) minimizes ~p.~, and satisfies (3b.31). 

Proof. By means of (3b.25) we write 

�9 { I~  U.Tr[D~] T r [ ( T . - - U D ) F ' ] + 2  ~ ' . . 

d,6 

- ~  IAI + /3 - '  T r [F '  In r ' +  (1 - F ' )  ln(l - r ' ) ] }  

= m i n { m ) n { T r [ ( T . -  UD)F ' ]  

+ f l - '  T r [F '  In F '  + (1 - F ' )  ln(l - F ' ) ]  } 

+ 1~2 .~ U~ Tr[D2x]} - / a "  IAI (3b.33) 

The minimum is over all 0~<F'~<I satisfying (3b.13) and (3b.14). Note 
that all we did in (3b.33) was to interchange the two minimizations; this is 
of course allowed since we are simply looking for the minimum in the set 
of all F ' ,  d, and 6. 

First relaxing the minimization to be over all 0~<F'~< 1, we can 
explicitly compute the minimum over F '  in the second line in (3b.33). We 
see that the minimum is uniquely achieved for the F' defined in (3b.31). 
We observe, however, that F '  2-1 �89 is of the form 
suitable for Lemma 3.2 (choosing Fix]  = -  �89 and Q=0) .  The 
operator F '  defined by (3b.31) therefore automatically satisfies (3b.13) and 
(3b.14) and we have, indeed, found the minimizer in the second line in 
(3b.33). Moreover, a simple computation then shows that the right side of 
(3b.33) is identical to the left side of (3b.29). 

If D minimizes ~ . u  and we define F '  by (3b.31), we have from (3b.25) 
and (3b.29) that 

-3~(fl,/a) = ~a. , , (O)-  (2fl - t  In 2+/~)IZl 

= Tr[(T,, - U D ) r ' ]  + �89 U,. Tr[D~.] 
N 

- /2 [AI +fl-~ T r [F '  In F ' +  (1 - F ' )  ln(l - F ' ) ]  

>~ - ~K,,(F') (3b.34) 

Since -~(fl , /~)~<--~B.,(F')  we must have equality in (3b.34), but it 
follows from (3b.25) that this can only happen if (3b.32) holds. 
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Conversely, if F '  minimizes -'~p,u and we define D by (3b.32), we see 
that 

- ~ ( f l ,  P) = - ~ , u ( F ' )  = T r [ ( T ,  - UD) F'] + �89 ~ U~ Tr[DZ~] 
x 

- / t  IAI + 3 -1 Tr[F '  In F' + (1 - F')  ln(l  - F ' ) ]  

/> ~p.~ (D) - (23-1 In 2 +/a) IA[ (3b,35) 

and we conclude that D is a minimizer for ~a.u and that (3b.31) must 
hold. | 

We remark that the minimum of ~B.,(d, 6) will be attained for d and 
6 satisfying 

d(x)2+lf(x)[2<~�88 for all x e A  (3b.36) 

In fact, since O<~F'<~ 1 we see from (3b.32) that D . ~  �88 which implies 
(3b.36). 

3.c. Gap and Zero-Temperature Limit 

Our discussion will turn in this section to the zero-temperature limit 
/~ --. or. Recall that the generalized HF energy is given by 

EHV(p) = inf{g(F')  - pN(F') [ F' is a l-pdm} (3c.1) 

A minimizing 1-pdrn F'o, that is, one that satisfies EHV(tl)=g(F'o)-IJN(F'o), 
is called a HF ground state. To make contact with our previous notation 
let us denote 

-~.~,(F') :=g(F')-uN(F')= lim -~'p.u(F')  (3c.2) 

and - ,~(ov,/1) := EHv(p) = lira a_ ~:. -- P(fl, p). 
We can derive an analog of Theorem 3.3 for the zero-temperature 

pressure by simply dropping the term - 3 - ' S ( F )  and essentially repeating 
the whole positive-temperature discussion. There is, however, one subtle 
difference. Given the potential D, the minimizing F '  in (3b.33) was 
uniquely defined by (3b.31). In the zero-temperature case the F '  we are 
Iooking for is simply the minimizer of T r [ ( T u -  UD) F']. If the operator 
(T u - UD) had zero eigenvalues, this minimizer would not be uniquely 
defined. In our case, however, we prove in Lemma3.5 below that 
(T~-  UD) has no zero eigenvalues. In fact, 

]ei[ ~> �88 min{U.~} [A[- '  > 0  

822/76/1-2..4 
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for any eigenvalue ej of T~ - UD. We can therefore write that the minimizer 
of Tr[(Tu - UD) F'] is 

F' = z ( T u -  UD)= lim (1 + exp[fl(T u - UD)]) -~ 
#'~oz 

where x(a) := 1 if a < 0 and zero otherwise. The point is that the value X(0) 
is unimportant. Let us note that there is another way of characterizing 
the zero-temperature states, thereby avoiding the repetition of the whole 
positive-temperature discussion. Namely, the main Theorem 3.12 of this 
section allows us to obtain all zero-temperature states as limits of positive- 
temperature states. 

3.4 T h e o r e m  (Ground state pressure). We have 

- ,~(oo, /J )  = E H F ( / J )  = min ~ , u ( d ,  6) - /~  IAi 
d , 6  

where 

~ , , ( d ,  6):=~oo,,(D):= - � 8 9 1 8 9  UxTr[D]] (3c.3) 
• 

I f  a potential D minimizes ~goo,u, then the operator (with Y defined as above) 

F'  = X(T~,- UD) (3c.4) 

minimizes (3c.2) (i.e., defines a HF ground state) and satisfies the 
consistency equation 

F~ = (D.,+ �89 Ix (3c.5) 

Conversely, if F' minimizes (3c.2), then the potential D defined by (3c.5) 
minimizes ~oo.u and satisfies (3c.4). 

The reader may wonder why the pressure depends on the absolute 
value of T u -  UD and not only on the negative eigenvalues. In this context 
it should be kept in mind that because of the special form of the operator 
T u - U D  the trace - � 8 9  u - U D h  is, in fact, equal to the sum of 
the negative eigenvalues. In comparing (3c.3) to (3b.30) we notice that 
limp_oofl-llncosh(flx/2)=�89 it is therefore natural to write the 
absolute value in (3c.3). It remains to prove the absence of zero eigen- 
values. 

3.5 L e m m a  (Gap estimate). Let D be a minimizing matrix-valued 
potential for ~lp.u with 0 < fl <~ oo and denote the eigenvalues of Tu -- UD by 
el, e2 ..... e21~l. Then, for any j =  1, 2 ..... 2 IAI, we have 

lejl >1 �88 e.,i, IAI -~ - /~-~2  In 2 (3c.6) 

where Umin := minx~ A { Ux }. 
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ProoL If D minimizes ~p.u for finite fl, we know that the operator 
F '  defined in (3b.31) minimizes the functional -~a.u in (3b.23). 
Likewise, if D minimizes ~o~,, we know that the operator F ' =  
lim a -  ~o (1 + exp[fl(T~ - UD)] ) - ~ minimizes the energy functional (3c.2). 
Notice that these definitions of F'  imply (3b.13) and (3b.14). What we do 
not know a priori is that if fl = oo (i.e., zero temperature), then F '  agrees 
with x ( T u -  UD). 

Let Q := I~0)(~01 denote the projection onto some eigenvector ~0 of 
T u - U D  with corresponding eigenvalue e. Note that V Q V  t is the projec- 
tion onto the eigenvector V~ of T~ - UD with eigenvalue - e ,  provided V 
is the unitary given by (3b.26). 

In terms of the operator F '  discussed above we define 

~ '  := F'  + 6Q - 6 V Q V  t (3c.7) 

We choose - 1/2 ~< 6 ~< I/2 such that e3 >10. With this choice 0 ~< F '  ~< 1. 
Note that q~ is an eigenvector of F'.  We denote its eigenvalue by 2. Then 
~0 is also an eigenvector of P '  with eigenvalue 2 + 6. With our choice of 6 
we have 0~<2, 2+d~< 1. 

Lemma 3.2 now implies that P '  is admissible on ,Jcga @,'u g a, as it 
corresponds to the 1-pdm 

Y ' ( F '  ~ . , )Y  (3c.8) 

Since F '  minimizes -~p . ,  it follows that 

--- - 6 Tr[T~(Q - V Q V t ) ]  - �89 ~ U.  Tr[ (F~ , -  �89 2 
x 

- (F'~ - t lx  + 6Q.,. - 6VQ., v*)  2 ] 

+ 2fl-~[21n2 + (1 -2 ) ln (1  - 2 ) -  0 .+6 ) ln (2  + 6) 

- ( 1 - 2 - 6 ) 1 n ( 1 - 2 - 6 ) ]  

= - 26e + �89 2 ~ Ux Tr[(Qx - VQ.,_ v*) 2] + 2fl- '  [ f (2)  - f ( 2  + 6)] 
x 

(3c.9) 

where f ( 2 ) : - = 2 1 n 2 + ( 1 - 2 ) l n ( 1 - 2 ) .  Clearly, - ln2~<f(2)~<0 for 
0 ~< 2 ~< 1. Hence If(2) - f ( 2  + 6)1 ~< In 2. We insert this estimate into (3c.9) 
and obtain, using 6e = 16]. ]el, 

2 lel ~>�89 161 ~ Ux T r [ ( Q x -  VQ.,V*) 2] - 2  l S [ - ' f l - '  ln2 (3c.10) 
x 
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Furthermore, 

Wr[(Ox-  VO_xV*) 2] = 2(l~p(x, T)12+ [r ],)12) 2 (3c.11) 

leads us by the Schwarz inequality to 

U., Tr[(Q.~-  VO.,. W) 2] ~ 2U,~i~ ~ (l~0(x, T)12+ I~0(x, ,[)1"-)-' 
A" X 

>~ 2Urnin I/II - j  Iq0(X, t )12+ l)l 2 

= 2 U m i  n I A I -  ! (3c.12) 

Inserting (3c.12) into (3c.10) and choosing 161 --  ~ concludes the proof. | 

We interpret any minimizing F in Theorems 3.3 and 3.4 as the physical 
state of the system at/3, #. Since F, subject to (3b.31), is the Fermi distribu- 
tion of the corresponding operator T , -  UD, we might as well interpret its 
eigenstates as the only orbitals the electrons can possibly occupy. This is 
nothing but viewing T , -  UD as the relevant quasiparticle Hamiltonian for 
the considered system. From the BCS theory of superconductivity the ques- 
tion arises whether or not the quasiparticle spectrum, i.e., the spectrum of 
T~,- UD, has a gap around 0 for low enough temperatures. The answer to 
this question is always positive, as we have just pointed out in Lemma 3.5. 
We remark, however, that our estimate for the gap becomes trivial in the 
thermodsynamic limit. In Theorem 3.15 below we give a formula for the 
gap in the translation-invariant case. 

3.d. Broken Gauge Symmetries 

We pause to remark that so far no assumption was made about the 
hopping matrix t, except that it be self-adjoint, connected, and traceless. In 
Theorems 3.3 and 3.4 in the previous section we established a unique 
correspondence between the HF ground and Gibbs states (described by F ' )  
and the potentials D that minimize ~p.u. We can therefore now entirely 
concentrate on the determination of the functions d and 6 that yield a mini- 
mizer D for ~tp.~,, where 0 < fl ~< o0. 

Key ingredients in the following analysis are the representations 

l n c o s h x =  In 1+ n ( k + l / 2 )  
k = 0  

(3d,1) 

= -  In 1+ dc Ixl rc 
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The significance of (3d.l), as examples of integrated Pick functions, was 
emphasized in Lieb and Loss t22) and Kennedy and Lieb. tlT~ The virtue of 
(3d.1) is, roughly speaking, that it allows us to convert traces into deter- 
minants. In fact, using these representations, we may write 

~#.~(D) = - f l - i  ~ {In Det[4rt2(k + �89 fl-2 + (T~, - UD) 2] 
k = 0  

I ) 2  - 2  - 2 [ A l l n [ 4 n 2 ( k + i  fl ] } + � 8 9  (3d.2) 
x 

f: 1 { ~ l n D e t [ c 2 + ( T _ U D ) 2 ] _ 2 1 A i l n c } d  c 

+ �89 U.,. Tr[D~.] (3d.3) 

Since we are dealing with finite-dimensional matrices, convergence of the 
above expressions is evident for any choice of D. 

3.6 Lemma (Phase alignment). Let t be real. Then, 

~t~,,(d, di) >~ ~o.,(d, e i~ 161) (3d.4) 

I f  6(x) ~O for all x 6 A, equality holds in (3d.4) only tf  6 (x )=  16(x)l ei~ for 
all points x ~ A and for some f ixed 0 <~ 0 < 2n. 

Remark. Lemma 3.8 below will show that, for the ground state, 
either 6 ( x ) ~  0 for all x or else 6(x )= 0 for all x. 

ProoL In order to prove (3d.4) we may assume'that 6 ( x ) # O  for all 
x ~ A. In fact, if we have proved (3d.4) for nonvanishing 6, we conclude for 
general 6 by the continuity of ~ . ~  that 

.Yla.,,(d, 6 ) =  lim ~tp,,(d, 6+~)>>. lim ~#.,(d, ]6+el )=~#,u(d ,  161) (3d.5) 
~ 0  ~ 0  

For the cases of equality, however, we have to assume 6 nonvanishing. 
Just as D corresponds to d and 6 via (3b.24), we denote the operator 

corresponding to d =  d and ~ := e ;~ 161 by /3. In view of (3d.2)-(3d.3) it 
suffices to prove, for every real c, that 

l n D e t [ c 2 + ( T , - U D ) 2 ] < ~ l n D e t [ c 2 + ( T ~ - U b )  2] (3d.6) 

and to show that equality in (3d.6) implies 6 ( x ) = #  ~ [6(x)[ for some 
0~<0<2rt. 

To this end, we define an operator 

B := ~. B.,. (3d.7) 
x 
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with B x > 0  (to be chosen below). Furthermore, we rewrite UD in the 
following way. Let F := Y'.x F,  1 ~ and G := ~x  Gx 1.~, where 

Hence, 

F~:=Uxd(x)( 1 -1) 

G := Ux(,~(x) ,5(x)) 
(3d.8) 

T~, - UD = T u - F -  G (3d.9) 

Notice that both F and G commute with B, and that F and G anticom- 
mute. Thus, abbreviating BI/2QBt/2=: Q. for any operator Q, we have the 
following identity: 

In Det[c  2 + (Tu - UD) 2] + 2 In Det [B]  

= In Det[Bl/2(ic  + T~ - F -  G) B( - ic + T u - FG - G) B t/2 ] 

= In Det[A(c, D ) -  {iF, t~}] (3d.10) 

where {A, B} := A B +  BA is the anticommutator and where 

A(c, D ) : = c E B E + ( T , - p ) E + G 2 + i c [ B ,  T,]  (3d.ll)  

We shall now prove that 

In Det[c 2 + (T, - UD) 2] ~< In Det[A(c, D)]  - 2 In Det [B]  (3d.12) 

and that equality holds in (3d.12) if and only if { T~, t~} vanishes. 
We will prove this claim by using a concavity argument. Introducing 

a unitary 

V : = ( ~  -10) (3d.13) 

one easily checks that V B W =  B, VT" u V*= - 7 ~  = -7~u, using the reality 
of t, and V F V * =  - F ,  V G V * = G .  Hence, we obtain 

V A ( c , D )  V * = A ( - c , D ) = A ( - c , D ) ,  V{Tu, t~} V*= -{7~,, (~} 

(3d.14) 

Now, from (3d.10) we see that the determinant in question is real and 
depends only on c 2. Therefore, 
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In Det[A(c, D ) -  {7~, (~}] = In D e t [ A ( - c ,  D ) -  {7~.. (~}] 

=In  Det[-A(-c. n ) -  {7~, (~}] 

= In Det[ V(A(c, D) + { f~,, (~}) Vii  

= In Det[A(c, D ) +  {7~, (~}'1 (3d.15) 

By the strict concavity of l nDe t [ . ] ,  i.e., �89189 
In Det[�89 + b)-I, with strict inequality unless a--b,  we arrive at the asser- 
tion in (3d.12). 

We now choose Bx = U.~ -~ 16(x)l- 1, keeping in mind our assumptions 
that 6(x )v  ~ 0 and Ux > 0. The key observation is that 

(~x=(BG)x- 1 I,~(x), (,~(x) ,~(x)) (3d.16) 

is unitary for all x e A, i.e., B:G 2 = 1. Thus, for any two points x, y E A the 
2 x 2 matrices belonging to ((~).,. and ((~).,, are identical modulo a phase 
factor 6 ( x ) 6 ( y ) 1 6 ( x ) f ( y ) 1 - 1 .  The last term { 7~,, (~} vanishes if and only 
if 

t,.., O(x) I~(x)1-1 = t,..,. 6(y)16(y) l  -I (3d.17) 

for all x , y ~ A .  It is essential for (3d.17) that t be real. From (3d.17) we 
learn by the connectedness o f t  that T,(~ + (~7~, vanishes if and only if 6 is 
of the desired form, 6(x) = e i~ I,~(x)l. 

Notice now that A(c, D ) =  A(c, D) and that fo r / )  we have equality in 
(3d.12). Inequality (3d.6) is therefore a consequence of (3d.12). II 

We remark that by (3d.12) we also get a lower bound on ~p.u(D) that 
depends only on d and I,~1, even in cases in which t is not real. However, 
this lower bound cannot then be expressed as ~p.~(D') for some matrix- 
valued potential D'. The reason is that (3d.17) now reads t.~,, 6(x) I~i(x)1-1 _- 
tx.,--~ fi(y)Id(Y)l-~. This equation cannot be satisfied unless 5 =  0, as shown 
in (3d.26) below. 

The strategy for proving Lemma 3.6 can actually be applied to other 
types of hopping matrices, as the following lemma shows. Using the notion 
of pseudo-spin discussed below [in (3d.50)-(3d.53)], we conclude in the 
next lemma that minimizers will have aligned pseudo-spin. 

3.7 Lemma ( Pseudo-spin a l ignment  ). Let t be bipartite (but not 
necessarily real) and la = O. Then 

~r I> ~tJ.o(( -- 1 )" (d 2 + 1612) '/2, 0) (3d.18) 
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In case t is not real and n(x) := [d2(x)  + I~(X)[ 2"] 1/2 ~ O for all X �9 A equality 
holds in (3d.18) if  and only i f  6 ( x ) = O  and d ( x ) = ( - l ) X n ( x )  or 
d(x) = - (  - 1 )x n(x) for all x �9 A. In case t is real and n(x) ~ 0 for all x �9 A 
equality holds in (3d.18) if  and only if  for all x �9 2 

where 

d(x) 6 (x )"~= ( ( -  1):' n(x) ) w *  (3d.19) 
6(x) - d ( x ) , l  wx - ( - l ) X n ( x )  x 

for some unitary 2 x 2 matrix w independent of  x �9 ,4. 

Proof. Since the main idea of the proof  is the same as that in 
Lemma 3.6, we shall use the notat ion therein. In proving (3d.18), we can 
assume n(x) nonvanishing for all x, otherwise we use a continuity argu- 
ment as in Lemma 3.6. For  simplicity we write T~ =o = T. Again, our  asser- 
tion follows by showing that for all real numbers c the inequality 

lnDet[c2 + ( T - U D ) 2 ] > ~ l n  D e t [ d  + ( T - U h )  2] (3d.20) 

holds, and there is equality if and only if d and 6 fulfill (3d.19) and /~ is 
assumed to be some matrix-valued potential for which the corresponding 
functions d and ~ do obey (3d.19). 

Again, we define (~ := BI/2QB ~/2. In analogy with (3d.10), we obtain 

In De t [ c  2 + ( T -  UD) 2] + 2 In D e t [ B ]  

= In Det[Bm(ic  + T -  UD) B ( -  ic + T -  UD) B 1/2] 

= l n  De t [A , ( c ,  D ) -  {T, U/}}] (3d.21) 

where now 

A,(c ,  D) := (U/))  2 + cEB 2 + ~2 + ic[B, T] (3d.22) 

Thanks to our  assumption of bipartiteness of t and the special choice 
of/1 = 0 for all x �9 ,4, we can now repeat the concavity argument above, 
using the unitary ( - 1 )x Indeed, ( - l ff T( - 1 )x = _ ~ ,  ( _ l )x B( - 1 )x = B, 
( - 1 )x UD( - l )" = UD, ( - 1 )x A , (  - c, D)( - 1 )x = A,(c ,  D), and thus 

In De t [A , ( c ,  D ) -  {T, U/)}]  = l n  D e t [ A , ( - c ,  D ) -  (T, U/5}] 

= I n  De t [A , ( c ,  D ) +  (T, U/)}]  (3d.23) 



Generalized Hartree-Fock Theory 53 

Hence, concavity of In Det [.  ] again implies that 

In Det[c  2 + ( T -  UD) 2] ~< In Det [A.(c,  D)]  -- 2 In De t [B]  (3d.24) 

with equality if and only if (T, U/5}=0.  We now make the choice 
Bx= U.Tnn(x) -1. The condition {T, U/5} = 0  becomes 

d(x)/n(x) = -d (y ) /n (y )  for x~  A, y e  B (3d.25a) 

t.~.,.6(x)/n(x)=-i--x.,.6(y)/n(y) for x ~ A ,  y ~ B  (3d.25b) 

But (3d.25) is equivalent to (3d.19) provided t is real. Conversely, in case 
t is not real, as we pointed out in the definition of the hopping matrix, 
there exists at least one closed path {x, x~ ..... xn, x} such that txx,"- t.,..x is 
not real. Thus, iterating (3d.25b) along this closed path, we obtain 

tx.,., " " tx.x6(x) 6(x) 
(3d.26) 

i~x, ... i~,~n(x) - n(x) 

whose only solution is 6 (x )=0 ,  implying 6 = 0  on the entire lattice A 
because t is connected. Finally, we remark that we may achieve the bound 
in (3d.20) by choosing ~ l ( x )=( -1 ) "n (x )  and 6"(x)=0. II 

In order to use Lemma 3.6 to conclude that a potential D minimizing 
~#.u is phase aligned, we must show that for such a potential 6(x)r  for 
all x (or otherwise vanishes everywhere). Likewise, in order to use 
Lemma 3.7, we must show that a minimizing potential has n(x) ~ 0 for all 
x. We prove these two results in parts (a) and (b) of the next lemma, again 
using the method of choosing an appropriate normalizer B. 

3.8 Lemma (Nonvanishing of minimizers).  (a) I f t  is realand 
if D=(d ,  6) minimizes ~#a,, then either 6(x)v~O for all x or 6 ( x ) = 0  for 
all x. 

(b) I f  t - I~  is bipartite (but not necessarily real) and if D = ( d ,  6) 
minimizes ~#.,, then either n(x )~O for all x or n(x)=O for all x. 

ProoL (a) Let D =  (d, 6) be a potential such that both sets 

Ao = { x ~ A  r 6 (x )=0}  and A\Ao= { x ~ A  I 6(x):/:0} 

are nonempty, We shall prove that D cannot be minimizing for ,~a,,. For 
0 < z ~< 1 we define a new potential D, by 

f ( l  --r2) 1/216(x)l, xCAo 
d~(x) = d(x) and 6~(x) = ~ tV6.v, x ~ Ao (3d.27) 
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where 

~ v -  u, ~ u~ [8(x)12>0 
\ x  a Ao x r A0 

We shall show that for r small enough ~a , . (D)>  ~a,~(D~). 
According to (3d.2)-(3d.3), we can write 

f; ~n..(D) = - [ln Det[c 2 + (T .  - UD) 2] - 4  IAI In c] d~~(c) 

+~ Ux TrED~.] (3d.28) 
x 

where the measure d/~ n for fl < ~ is a sum of Dirac delta functions 

d#n(C)= ~ f l -16[(2k+ 1)nf l -~--c]  dc 
k = 0  

while for f l = ~  it is d/a~ =(2n)  -~ dc. 
We chose 6av to make the last term in Jta.u independent of r, i.e., 

3~.,. U. , .Tr[D~]=ZxU.~Tr[D~.. , .] .  To conclude that ~tp,,(D)>gta, u(D~), 
we must therefore show that for r small enough 

;o {In Det[c 2 + (T~ - UD) 2 ] - In Det[c 2 + ( T , -  UD~) 2 ] } dish(c) < 0 

(3d.29) 
To prove (3d.29), we again appeal to (3d.12). We choose Bx= 
U7 ~ 16T(x)l-I and obtain that 

In Det [c'- + (2", - UD) 2] ~< In Det [A(c, D)] - 2 In Det[B] (3d.30) 

and 

lnDet[c2  + ( T , - U D ~ ) 2 ] = l n D e t [ A ( c , D , ) ] - 2 1 n D e t [ B ]  (3d.31) 

Since {T,, 1~,} = 0  [here GT is defined as in (3d.8) but with & replaced by 
fi,-1 we see from (3d.10) that 

A(c, D~)= (icB + T , , -  U6r  + L , -  UD~) 

and A(c, D) = A(c, D~) - I + ~2. Therefore (3d.30) and (3d.31) imply 

In Det[c2 + (T~,- UD ) 2 ] - I n  Det[c2 + ( T . -  UD~) 2 ] 

~< In Det [ I - (icB + ~,  - U13 ~) - ~ ( I - ~2)( _ icB + ~ ,  - U]b ~) -~ ] 

= T r l n [ l - - ( i c B +  T~,-- Us -~ ( l - d ~ - ) ( - i c B +  T . -  UD~) i] 

(3d.32) 
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Using the inequality l n ( l - A )  ~< -A ,  we obtain 

In det[c 2 + (T~,- UD)'-] - In Det[c 2 + (T~,- UD~)'-] 

<~ -Tr [ ( i cB  + T~,- U6~)- 1 (1 - (~- ' ) ( -  icB+ L , -  U/5~)-' ] 

~< -Tr[K~(c)]  (3d.33) 

where we have denoted 

Kr := (icB + T,, -- U19~) - 1(1 - (~2)( _ icB + T,, - UDr 

=B-U~-(ic+ T j , -UDr  I ( B - I - B G  2) 

x ( - i c +  T , -  UDr -I B -I/'- (3d.34) 

The estimate (3d.29) follows if we show that for r small enough 

I Tr[Kr > 0 (3d.35) d~(c) 

We denote by Po the projection onto the sites in Ao, i.e., Po =~x~Ao 1~ 
and /~o = 1 -  Po = ~.*~Ao lx. If we assume r ~< 1/2, we then have 

.r 

B -1 - B G  2= ~ ~U.,.6~l.,.- ~ (1 _z_,)l/_, Ux 16(x)[ l.,.>~azPo-bz2Po 
x ~ A0 .': ~ A0 

(3d.36) 

where a and b are strictly positive constants depending on the values of 
16(x)[ and U,. for all x. 

We therefore find 

Tr[K~ "r] >~raTr[B-l/:(ic + T , -  UDr)- '  P o ( - i c  + T , -  UD~)-'  B -I/'-] 

- r 2 b  Tr[B-l/2(ic + T, -UD~)  -1 P o ( - i c  + T , -UD~)  IB-I/'-] 

Since a'Po ~< B - ~  < b'l for constants a' and b' [again depending only on 
16(x)l and Ux for all x] we have the estimate, with IAI2=AA *, 

Tr[KI, "~] >/raa' Tr [IPo(ic + T , -  UD~)-1 Po123 

- z2bb ' Tr[(c 2 + (T~, - UD,) 2) -1] (3d.37) 

Since the problem is finite-dimensional, it is clear that the eigenvalues 
of T~,-UD~ converge to the eigenvalues of T , - U D .  Hence, the gap 
estimate (3c.6) implies that for r small (depending on U.,., D.,., and t.,..,.) 
there is a constant g~ satisfying g/* > 0 for fl large enough (in particular for 
fl = ~ )  such that (T~,- UDr) 2/> g~. Therefore 

[c2 + (T~,_ UD,)2] -1 ~< (c 2 + g~)-11 (3d.38) 
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Recall now that the measure d/O appearing in the Pick representation 
(3d.1) is supported away from zero when fl < ~ .  It therefore follows from 
(3d.38) that for small enough r 

I Tr[(c2 + (Tu + UD~)Z)- `] aUp(~) 

is bounded independently of z for all ~. 
In order to conclude (3d.35) (and hence the lemma) from (3d.37), it 

only remains to prove that 

lira inf I Tr[lPo(ic+ T . -  UD~) -~ eol"] d~o(c)~0 (3d.39) 

Since t is connected, we know that 

Po(ic + T,,-  UD) Po = PoToeo4:O 

Po(iC + T~,- UD) Po=PoToPo~O 

Therefore we must have Po(ic + T , -  UD)-~Po#O [because if we have a 
matrix (~ b) with operator-valued entries and c4:0 and b4:0, then its 
inverse (~, ~) must have 3 ~ 0  and ~ ~0 ] .  Since 

lim Tr[lPo(ic + T~,- UD~) -~ Po[-'] = Tr[lPo(ic + T , -  UD) - ' eo l  2 ] 
T ~ 0  

we obtain by Fatou's Lemma that 

limionf I Tr[ lPo(ic + 7".- UD~)-' Pol z ] dpp(c) 

>t I Tr[iPo(ic + T,,-  UD)- i po12] diary(c) > 0 

and part (a} follows. 

(b) Part (b) is proved in the same way as part (a). This time we 
choose D~ with 6,(x)= 0 and de(x)= ( - 1 ) "  n~(x), where 

n,(x) = ~(1 -~'-)'/'-n(x), X~Ao 
[ T r / a v  , X ~ A o 

Here nay is again defined such that 52.,. Uxn(x)2= ~'.,. U,.G(x) 2. The rest of 
the proof is identical to the proof of part (a) except that we use (3d.24) 
instead of (3d.12) and we choose Bx = UxG(x) -I. | 

We pause to discuss the symmetry aspects of the Hubbard model and 
how they are reflected by Lemmas 3.6 and 3.7. Independent of the hopping 
matrix t and the chemical potential p, the Hamiltonian H will always be 
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invariant under a global (i.e., all spins are equally transformed) spin trans- 
formation W~ = ~tr 

:" t "'t ~ Wa, "t #s cx.,,"# s := ,,cx.,,' (3d.40) 

for all xeA, where w~ U(2) is a unitary 2 x 2  matrix. Note that W~ is a 
Bogoliubov transformation. 

As always we shall be particularly interested in the spin rotations, i.e. 
transformations ~r corresponding to w in SU(2). The full U(2) group 
is generated by the SU(2) subgroup together with the subgroup 
[isomorphic to U(1)] consisting of all 

w 0 = (  e'~ e,O), 0~<0<2~ 

The Bogoliubov transformation ~Uo := #'~(wo) is a global phase change, i.e., 

, , io , (3d.41) "~o e x. o :~ O : : e C x ,  a 

for all x~A. Spin rotations and phase changes [i.e., the full U(2) group] 
exhaust the symmetries of the Hamiitonian H unless we assume more 
about the hopping matrix t. 

The spin rotations are generated by the (quadratic) spin operators 

1 ~ ~ (c.,.Tc.,..,+cx.lcx.t)* , 
x ~ A  

~,~ --cx'lCx'l) =~, (c.,,TCx.* 

1 
,5P3 ='~ ~-'~ (C.r.TCx, T *  _ Cx. l* Cx, ~) 

x ~ A 

The U(1) phase change is generated by the number operator 
Y = Z  ..... ' C.,..,aC.,,..a. 

According to (2a.9), the Bogoliubov transformation ~ (w) has its 
counterpart acting on ~ @ J :  which we will denote by Ws(w) and, in the 
special case of a phase change, by Wo. Indeed, 

Ws(w) = ( w ,~) and W a : (  ei~ e iO 

e - io 

e - i~ I 

(3d.42) 



58 Bach et al. 

From Lemma 3.1 it is easy to conclude that any F minimizing the 
energy functional (3b.37) corresponds to a HF ground state with total spin 
zero, i.e., a state with p(ff'~ + 5e~ + ba~) = 0. 

3.9 Theorem (Zero total  spin), A 1-pdm F corresponds to an 
SU(2)-invariant HF state if and only if it has the form (3b.2). In particular, 
the HF ground states have total spin zero. 

ProoL The condition that a state be SU(2) invariant is that F com- 
mutes with W~(w) for all w ~ SU(2). Recalling that the only 2 x 2 matrices 
commuting with all elements in SU(2) are multiples of the identity matrix, 
it follows easily that exactly the matrices of the form (3b.2) commute with 
all Ws(w). It then follows that the HF ground states have total spin zero 
since they are pure states. II 

The HF states are, however, not necessarily invariant under the U(1) 
phase symmetries. If we use the unitary operator Y defined in (3b.ll),  we 
can write 

where 

W~ = 0 (3d.43) 
e - io 

A 1-pdm F will therefore commute with Wo if and only if the corresponding 
F '  commutes with W~. In case of the minimizing F~ it follows from (3b.31) 
(for positive temperature) or (3c.4) (for the zero-temperature ground 
states) that F~ commutes with W~ if and only if the corresponding matrix- 
valued potential Do commutes with W~. From (3b.24) and (3d.43) we find 

W;D, W~* = W'o \6(x) -d(x) , /  = \e -2 '~  - d ( x )  ,I (3d.44) 

Thus Do commutes with W~ if and only if 3(x) = 0, which not surprisingly 
is exactly the condition that the state is normal. Notice that (3d.44) agrees 
precisely with the characterization of the possible minimizers given in 
Lemma 3.6. 

Note also that (3d.44) yields the same 1-pdm for 0 + n ( m o d  2n) as 
for 0, meaning that the representation of the group U(1 ) by the minimizing 
states is not faithful. This reflects the fact that generalized HF states p obey 
the particular restriction P(et'"e2k +1)= 0, where ei is either a c or a c*. 
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Now let us consider the case in which t is bipartite and/~ = 0. Whether 
t is real or not, the Hamiltonian H is invariant under the particle-hole 
transformation 

"/r h ~C.*~.,~ ~r := ( - 1 ).4 8c .... 
(3d.45) 

where ct is any complex number which we insert to indicate that ~Vph is 
antiunitary. In fact, for t nonreal the particle-hole symmetry of the 
Hamiltonian cannot  be unitarily realized. On ~ ~ ) ~ ,  with the fixed basis 
{(x, a) lxe A, tr = T, ~} in Yg', ~ph corresponds to (the 4 x 4 operator)  Wph 
acting on operators as (A, B, C, and D are here 2 x 2 operators)  

W p h ( c  n )  w p h l = ( - 1 ) x ( D  C ) ( - 1 ) "  (3d.46) 

As for the U(1) symmetry, we would like to write Wph in terms of a 
symmetry on ~ @.,~ff~. This is only possible if we first compose it with a 
spin rotation which after all will leave our states invariant by Theorem 3.9. 
In fact, if w =  ( ~  I ~), we have 

( ) YW~(w) Wph Y* = (--  1 )x Wph , 
Wph 

where W'ph is the antiunitary map on 9~f,[ ~ ~ with matrix (in the standard 
basis) given by 

, (Olo) 
g"ph = -- 1 

In order to understand the transformation property of a minimizing Fs it 
is again enough to consider the potential. 

(3d.47) 

since ( - 1 )x D( - 1 )" = D. 
If t is not real, we compare this with our  result from Lemma 3.7. 

According to the condition on the minimizing D therein, we must have 
6(x) = 0 for all x e A. The minimizing D is, hence, of the form D = ~.~ D,-lx 
or D = ~ x  -D. , . I~ ,  where 

D"=(d(x) -d(x)) (3d.48) 
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ThuS, assuming that t is bipartite and nonreal and # = 0, the minimizing 
1-pdm F has no pairs and corresponds to a normal state. It is unaffected 
by spin rotations and phase changes, which means it has spin zero and 
fixed particle number. Only the particle-hole symmetry is broken due to 
the global change d(x)~ -d(x) for all x ~ A. 

In case of a real, bipartite t at # = 0  the symmetry group of the 
Hamiltonian is even larger. Let us introduce the Bogoliubov transforma- 
tion ~r by 

~ c ~ T  ~r~.  = ~T 
(3d.49) 

t t _ x "~r c ~ ' e / ' b p  - -  ( - 1 ) cx~ 

The global pseudo-spin rotation ~ is given by 

"/Vp,(w) = "/V+bp'#/~(w) ~ o  (3d.50) 

for any spin rotation ~//~(w), with w6SU(2). It leaves the Hamiltonian 
invariant in the real bipartite case at/a = 0. 

As in the spin case we could of course have considered the full group 
of U(2) pseudo-spin transformations. The transformation ~Vp,(Wo) corre- 
sponding to 

w o= ( el~ eiO) 

is, however, equal to the spin rotation corresponding to 

e io 

~0 := e-iO) 

i.e., #~s(wo)= ~r Conversely, the U(1) group of phase change sym- 
metries is really a subgroup of the SU(2) pseudo-spin rotations. In fact, the 
pseudo-spin rotations are generated by the pseudo-spin operators 

1 
~ = ~  E (-l)"(c.+,.., + Cx. l + Cx, tCx.T) 

X ~ A  

1 _ 

= ~ xL~ ( -  I )~(cL) c+,. ~ - c,..~c.~.T) 

~ , _ _ l  + l I 
3_2 E t 

x ~ A  

Notice that in terms of how they transform operators, i.e., A ~ "WAY/-+, we 
cannot distinguish the unitaries 
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We also point out that for real t the particle-hole symmetry may be 
unitarily realized as ~grph = #r~(W)~"tbp~C/~(W*)~/r with w= ( o  ~ ~) and is 
therefore contained in the group of spin and pseudo-spin rotations. 

The unitary operator Wps(W) on ovf0)o~ corresponding to a 
ws SU(2), which we write as 

w = (  wrr ~_vT~') 
-~'r~ wrr/ 

is given by 

wT t (-1)Xwr~) 
wr~ ~ ( - l ) X w t ~  (3d.51) 

Wps(w) = (-1)x~Ta ~rt 

\ - ( - 1 ) x ~ r ~  ~Tr / 

Thus, 

( ) YWr,~(w) y,= Wp~(w) , 
Wp~(w) 

where 

( wrr ( -  1)Xwr~ (3d.52) 
W~(w)= - ( - 1 )"~('rt if'it / 

In other words, W~,s(w)DxW~(w)* is the transformation of the 
potential D.,.. Now observe that if D,- fulfills (3d.19), then so does 
Wp~(w)DxW~(w)*; indeed, starting from D with fi=0, (3d.19) simply 
states that all minimizers are of the form 

W;s(w ) DW~,s(w)* (3d.53) 

with an arbitrary SU(2) matrix w. Hence, for real, bipartite t a t / ~ = 0  the 
situation is as follows. Whenever 6 is different from 0, the minimizing F 
does not correspond to a normal state and the particle number is broken. 
Likewise, the pseudo-spin rotation is a broken symmetry, as can be seen 
from (3d.53). 

The complete tables to illustrate the broken symmetries can be found 
in Section 5. 

3.e. Spatial Uniqueness of Minimizers 

In the previous section we saw that if a minimizing potential D is non- 
vanishing, there is a whole family of minimizers related by global gauge 

822/76/1-2-5 
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t ransformations of D. In fact, the phase of 6 or the pseudo-spin must  be 
aligned over the lattice and we can only allow global gauge t ransforma-  
tions. The aim in this section is to prove that  all degeneracies of  the 
minimizing potentials D are caused by these gauge transformations.  Since 
the H F  ground and Gibbs  states are uniquely determined by D, it shows 
that  the only degeneracies of  these H F  states are due to the symmetries 
discussed in the previous section. 

More  precisely, we shall show that  if D t and Dz are two minimizers for 
N't~.~ ,, then D~=D~, i.e., nt=n2,  where, as before, nj,2=(d~.2+ [3~.z]2) ~/2. 
We show this in the case where t is biparti te and p = 0. If t is not biparti te 
or # ~ 0 ,  we also get d~ = d2 (see L e m m a  3.11). The uniqueness s ta tement  
in the biparti te case with p---0 is an immediate  consequence of the strict 
convexity we now prove. 

3 .10  L e m m a  ( e o n v e x i t v  o !  ~ . o ) -  I f  t is bipartite (not necessarily 
real) and p = 0 ,  then ~r  0), regarded as a functional of  the 
function r / = n  2, is convex. It is strictly convex at q if  q(x)CO for all x. 6 

Proof. We shall prove that  if no=[2n~+(1-2)nZz] t/2 for some 
0 < 2 <  1, then 

~p.o((-1)Xno, O)<~2~a.o((--1)"n,,O)+(1--2)~/~.o((--1)~n2,0) (3e.1) 

with equality if and only if nt = n2 = no. Since the term Z.~ T r [ D ~ ]  is linear 
in n 2, we may ignore it here and we only need tO consider the 
first term in (3d.2)-(3d.3)). Let Dj, j =  0, 1, 2, denote the potentials corre- 
sponding to (dj, 6s) = ( ( -  1 )~nj, 0), for j = 0 ,  1, 2. 

To  prove the strict convexity, we assume no(x)#O [i.e., either 
n t(x) 4:0 or n2(x)~0]  for all x ~ A. If no vanishes somewhere,  we still get 
convexity (but not strict) by a continuity argument.  For  both  D t and D2 
we use (3d.24) with B = U~.lno(x) - ~ and we find 

In D e t [ c  2 + ( T -  UDj) 2] ~< In D e t [ A , ( c ,  Dj)]  - 2 In D e t [ B ]  (3e.2) 

z n~l  we get from the definition (3d.22) that  A,(c,  Dr) + A,(c ,  D2) Since D j = 
= A, (c ,  Do). By strict concavity of In D e t [ - ]  we obtain 

;t In D e t [ c  2 + ( T -  UD~) 2] + (1 - 2) In D e t [ c  z + ( T -  UD2) 2] 

~< In D e t [ A , ( c ,  Do)]  - 2 In D e t [ B ]  

= In D e t [ c  2 + ( T -  UDo) ~ ] (3e.3) 

6 The convexity is, in fact, strict for all q, but this is more complicated to prove. 
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with equality if and only if nl =n2 = no. The last equality in (3e.3) follows 
from {T, U/5o} =0.  Inserting (3e.3)into (3d.2)-(3d.3) gives (3e.1). II 

If we do not assume bipartiteness and p = 0 the situation is somewhat 
more compicated. We have the folowing convexity result. Note that 
assuming t - p  not bipartite includes bipartite t with p :/: 0. 

3.11 Lemma (Convexity of ~p,,). I f  t is real, ~p.,(d, (n2-d2)l/2), 
regarded as a functional of  d and t 1 = n 2, is convex, but not always strictly 
convex. I f  t - l t  is not bipartite, the functional ~tp.~(d, (n2-d2)  u2) is mini- 
mized by unique functions d and n. 

ProoL We first prove the convexity. Note that ~a.~, as a functional of 
the functions r /=n  2 and d is defined on the convex set {(~/, d) I [dl2~<r/}. 
Given dj and nj for j =  1, 2 satisfying IdjI <<.n j, define do = 2dr + ( 1 -  2)d2 
and no = [2n~ + ( 1 -  ,!.)n~] 1/2. Our aim is to prove that 

~, . , . (do .  (no - d~o) 1/2) 

<...2~l,.,(dl, (n~--d~)l/2)+(1 --2)~,p.,,(d2, (n~-d~)  1/2) (3e.4) 

Let Dj for j = 0 ,  1, 2 correspond to (dj, 6j)= (dj, (n~-d~)U2). Since we 
can otherwise use a continuity argument we may assume that 6o(X)= 
[no(X)2 _ do(x)2] u-' r 0 for all x E A. 

For both DI and D2 we use (3d.12) with B =  U~ -l [6o(x)[ - l =  
U71[no(x)2 _ do(x)2] -1/2. We obtain 

In Det[c  2 + ( T -  UDj) 2] ~ in Det[A(c, Dj)] - 2 In De t [B]  (3e.5) 

with equality if and only if { f'~,, (~j} vanishes. Using A(c, DI) + A(c, D2) = 
A(c, Do), we obtain 

2 in Det[c-' + ( T -  UD I)-'] + (I - 2) In Det[c 2 + ( T -  UD2)"] 

<~lnDet[A(c, D o ) ] - 2 1 n D e t [ B ] = l n D e t [ c 2 + ( T - U D o )  2] (3e.6) 

The last equality in (3e.6) holds because { T,,  (~o} vanishes. The convexity 
in (3e.4) is an immediate consequence of (3e.6). 

We have equality in (3e.6) if and only if A(c,D~)=A(c,  D2)= 
A(c, Do), i.e., 

- { t , , ,  L } + 6~ + , ~  = - { t . ,  ,~_.} + 6~ + . ~  = - {  t,,, .~o} + 6g + . ~  
(3e.7) 

To show that ~.~, need not be strictly convex, consider the case of 
bipartite t with # # 0. Let d, (x)= -U.~-ip + ( _  1)Xc and d2(x)= -U.~. l la- 
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( -  l)Xc for some c > 0  and let 6~ = 6 2 = 0 .  If we take 2 =  1/2, we find do = 
1 --1 � 8 9  /~andn20 -dg=I~-I~2-1"4:a-~'42 d 2 = c  2 . o n  the other  hand, 

by pseudo-spin invariance we see that strict convexity is violated: 

~p.~(d~, 0) = ~ . u  (d2, 0) = ~ . 0 ( (  - 1 )Xc, 0) + ~ U.~-~#2 
x 

= ~a.o(0 ,  c) + ~ U.~-,#2 = ~a .~ (do ,  (no 2 _ d02),/2) 
x 

Assume now that D~ and D 2 are two minimizers for ~p.~ and define 
Do as above with 2 = 1/2. By convexity of ~a . ,  we conclude that Do is also 
a minimizer. Moreover,  we know from Lemma 3.8ab that either ~o (x )=  0 
for all x or ~o(X):/: 0 for all x. If ~o (x )=  0 for all x, we have 

- d 2 )  q- ~ 6 ,  q- ~c~ 2 

Hence dz =d2  and ~ = ~ 2 = 0  and thus n~ =r/2. 
If CSo(X)~0 for all x, we know that (3e.7) is satisfied and that 

{ ZP,,, (~j} = 0  (3e.8) 

for j =  0, 1, 2. From the off-diagonal part  of (3e.7) we conclude that for all 
x ~ y  in A with txy:~0 we have 

P,x +/~t,. = Fox + -Fo.,. (3e.9) 

Hence, P,x-Pox=-(P,,.-Po.,.). If the off-diagonal part t' of t (i.e., 
t~,.= G.,,-t.~.~fxv) is not bipartite we can find a path z~, z2 ..... Z2k =Z~ with 
an odd number  of points such that t' :~ 0. Therefore F~., = Fo-, and by 

" - i 2 i  + I ~ - 

connectedness of t we then get Fr,. = Fox for all x in A, i.e., d~ = do = d2. It 
then easily follows from (3e.7) that also n~ = no=n2 .  

We are left with the case where the off-diagonal part  t' is bipartite. In 
this case we get from (3e.9) 

16o(x)l -~(d~(x)  - do(x)) = c( - 1 )* (3e.10) 

for some constant c. We shall show now that if c :/: 0, then D o cannot  be 
minimizing. By connectedness of t we see that (3e.8) implies that 

fit(x) = al tSo(X) (3e.1 1 ) 

where a~ is a constant [recall that here CSo(X) is positive]. 
We turn to the diagonal part of (3e.7): 

( t x x - p -  U~ d~(x))2 + U. 2. [6,(x)l 2=  ( t x x - p -  U., do)- '+ U~. rio(X) 2 

(3e.12) 
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If we insert (3e.lO) and (3e.ll) into (3e.12), we get 

2 c ( -  1) x U~ 100(X) - I ( t xx - I  a -  Uxdo(x ) )+cZ+ la112= 1 

We therefore conclude that if c 4: O, then 

txx --It -- U x do(x ) = - (  - 1 )x Ux 6o(X) C (3e.13) 

where C is a constant. We can restate this as 

We can choose a pseudo-spin rotation W as in (3d.52) such that 

W ( ( - 1 ) " C  1 I + C  2) 
1 -(-l)~C) W*=(I+C 2 (3e.15) 

Since t' is assumed to be bipartite, we see that the unitary operator 

x | " 

has the effect V W ( T  u - UD) W t V  t = W ( T , -  UD) W*. 
From (3b.31) and (3c.4) we see that if F '  is the minimizer correspond- 

ing to Do, then F ' = F # ( ( T , - U D o ) ) ,  where Ft~ is the function F#(2)= 
[1 +exp(/~2/2)] -j  [for /~= ~ we have F ~ ( 2 ) = l i m # _ ~  F#(2)=X(2)]. 
Hence V W F ' W * V * =  WF'W*.  For the potential Do this implies that 

(1 1 ) W D o W , (  1 1 ) = W D o W  , 

Since WDo W* is traceless, we see in particular that the diagonal entries of 
WDo W* must be zero. If we write 

Do,.=fo(x)  (do(x)  ho(X)- ~ 1 ) 
�9 1 - do(x) 6o(X) - l 

we see by comparison with (3e.15) that we must have do(x)6o(X) -~=  
( -1)~C.  It then follows from (3e.13) that t x x - p = O .  Since we are in the 
case where t' is bipartite, this implies that t - p  is bipartite, contrary to our 
assumption in the iemma. I 
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We can now state the main result of Section 3. 

3.12 Main Theorem (Characterization of HF states). The 
H F  Gibbs states or ground states are unique modulo global gauge transfor- 
mations. More precisely, all H F  Gibbs states at the same inverse temperature 
fl or all H F  ground states [i.e., the minimizers o f  the functionals (3b.23) and 
(3c.2), respectively] are related by global gauge transformations. 

ProoL By Theorems 3.3 and 3.4 there is a one-to-one correspondence 
between the HF states described by F '  minimizing - # a , ,  and the poten- 
tials D minimizing ~a. , .  The uniqueness of D modulo gauge transforma- 
tions follows immediately from the results about ~t~,,; Lemma 3.6-3.8 and 
Lemmas 3.10 and 3.11. | 

We remark that Theorem 3.12 allows us to characterize the HF Gibbs 
states by the global gauge and the inverse temperature. Indeed, the corre- 
spondence between fl and the HF  Gibbs state F'(fl ,  w) is continuous in 
/~ for every fixed global gauge w (w being a pseudo-spin rotation, or a 
phase change). In particular, this mapping is continuous at /~= ~ and, 
a posteriori, we could have spared the entire discussion of the zero- 
temperature state by simply appealing to this continuity. 

We shall see in Section 3.g that if the temperature is high enough, 
there may be no symmetry breaking and hence the Gibbs state is unique. 
There is no degeneracy caused by gauge transformations. If, however, the 
temperature is small, it follows from Lemma 3.5 that there is symmetry 
breaking for any finite system. In the translation-invariant case studied in 
Section 3.g the symmetry-breaking phase transition persists in the thermo- 
dynamic limit. 

3.f. Spatial Symmetries 

In Section 3.d we studied global gauge symmetries of the Hamiltonian. 
In the present section we shall address the question of spatial symmetries, 
i.e., symmetries of the lattice or, more precisely, of the t matrix and the 
coupling constants U,.. 

As a special example, in the next section we shall explicitly determine 
the minimizing matrix-valued potential D when the lattice is translation 
invariant and the coupling constants Ux are independent of x. 

By a spatial symmetry we understand an invertible transformation r: 
A ~ A of the lattice A. We say that t is magnetically invariant under r if 
there exists a map c<~: A ~ R such that 

t,lxl,l.,. I = exp[ -- i( et,( x ) - e,() ,))]  tx.~, 
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Equivalently, if we realize t as an operator on X~', magnetic invariance 
means that t commutes with the unitary transformation re(z) on ~ defined 
by 

m(z) Ix, a )  = exp( - - i~ (x ) ) I z (x ) ,  or) 

We need the phase factor ~ in order to treat nonreal t. If t is real, we 
may of course choose ~, = 0. As an example, consider a two-dimensional 
toms, i.e., a finite square A in Z 2 with periodic boundary conditions. The 
original (real) hopping matrix considered by Hubbard,  Kanamori,  and 
Gutzwiller is invariant under pure translations [m(r)  with =r = 0 ]  on the 
torus. Consider, however, the (complex) hopping matrix t, which differs 
from the elements of the original matrix by the multiplication of complex 
phases and which correspond to having a fixed magnetic flux through each 
unit square. Then t is not invariant under pure translations, but rather 
under the magnetic translations m(,}, which are compositions of transla- 
tions and gauge transformations ( ~  4:0). 

The family of all transformations ~ for which t is magnetically 
invariant and the coupling constants satisfy U~lx~ = Ux for all x in A 
naturally forms a group f# which we call the spatial symmetry group {of t 
and U). Notice that ,~-*m(z) need not be a unitary representation of f#. In 
fact, for the two-dimensional torus the translations commute, while the 
magnetic translations do not. [ I f  r t ,  r2 denote the translations of unit 
length along the first and second directions, respectively, we have 
m(r,)m(zz)=exp(ifk)m(rz)m(zl) ,  where ~b is the flux through the unit 
squares.] We emphasize that the group ff itself need not be Abelian, it 
could be one of the crystallographic groups (e.g., if we study the Hubbard 
model on the lattice formed by the carbon atoms in the Buckmister- 
fullerene C6o molecule). We say that t is translation invariant if the spatial 
symmetry group ff acts transitively on the lattice A, i.e., if for any two 
points x, y e A  there is a z in ff such that z ( x ) = y .  If t is bipartite (and 
connected), it is easy to see that each element r of f# must either map the 
A and B sublattices into themselves [ z ( A ) = A  and z (B)=  B] or map the 
A sublattice to the B sublattice [ z (A)=  B]. It is clear that the latter type 
of transformations exist only if IAI = IBI. 

Corresponding to T e f# we define a Bogoliubov transformation ~ on 
the Fock space ~ by 

t ~/p_-t, Cx.o pr r'ulrt =exp(--iota(x)) c~.~.~ 

The unitary matrix W, corresponding to ~ is 

W__(m'T' 
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If z belongs to the spatial symmetry  group, then the H u b b a r d  
Hamil tonian  is invariant  under ~r We shall prove in the next l emma that 
if t is also non bipartite, then the H F  Gibbs  states are also invariant under 
~#/~,. In the biparti te case the states are also invariant  under t ransformat ions  
such that  z ( A ) = A  and hence z ( B ) = B ;  they need, however, not be 
invariant under t ransformat ions  such that  T (A)=  B. 

3 .13  T h e o r e m  (Spatial invariance). Let ~9 be the group of  spatial 
symmetries of  t and U. 

(a) I f  t is bipartite (but not necessarily real) and ~ = O, all minimizing 
potentials D for ~p,o satisfy that n ( x )=  I 2 l/, (3 T r [ D x ] )  - is invariant under (#, 
i.e., n ( z ( x ) )=n(x )  for all z e ~ .  All minimizing F'  for -:~p.o are invariant 
under W, unless r maps the A sublattice to the B sublattice I t ( A ) =  B].  As 
a consequence, the HF ground and Gibbs states are invariant under ~ unless 
�9 ( A )  = B. 

(b) Assume t real and t - l ~  not bipartite. Then the minimizers D 
for 9tp.u, F '  for  --~p,~ and the H F  ground and Gibbs states are invariant 
under fg. 

ProoL Part  (a) follows from the strict convexity proved in 
Lemma  3.10, since it implies that  n is unique and hence invariant. The 
second statement in part  (a) is a consequence of Lemma  3.7, where all the 
possible minimizers D are described. In fact, the minimizers D are invariant  
under z unless z(A) = B because the 2 • 2-matrix-valued function w x defined 
in Lemma  3.7 is constant  on the A sublattice and on the B sublattice. 

Part  (b) follows from L e m m a  3.11 and L e m m a  3.6. II 

3.g. The Translation-lnvariant Case 

In this section we shall explicitly determine the minimizing matrix- 
valued potential  D under the additional assumpt ion that  the lattice is 
translational invariant,  i.e., that  the spatial isometry group ~ of t and U 
acts transitively. In particular,  this means that  U is constant  independent 
of x. 

As shall be shown, there occurs a phase transition as the temperature  
varies about  a critical value T,. or 3~, respectively, provided 

1 <--U--u Tr~rA[ I t - / ~ l - l ]  < oo 
Ial  

holds and assuming that the spectrum of t - / ~  is symmetr ic  about  0. More  
precisely, we will show that  Dx = 0, i.e., n ( x ) =  0 for all x E A, if fl ~< tic and 
n(x) is equal to a nonzero constant  n o for all x e A in case fl > tic. 
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Since, as we pointed out in Section 3.d, n ( x ) =  n o > 0 goes along with 
having nonvanishing aligned pseudo-spins everywhere in A, this implies 
long-range order which is off-diagonal in the case that 6 ( x ) 5 0  for all 
x ~ A .  

Second, due to the analytical dependence of the pressure on D, the 
transition from n-= 0 for fl ~< tic to n > 0 for fl > tic also indicates that the 
pressure is nonanalytic at fl,.. Notice that in our model there is no thermo- 
dynamic limit IA] ~ oo required to yield a nonanalytic thermodynamic 
potential. 

3.14 Theorem (Pressure in t ranslat ion- invar iant  case). I f t  
(with as usual t - I t  either bipartite or real) and U are translation invariant, 
the pressure is 

~ ( f l ' l a ) = - - m i n { - 2 f l - ' T r {  l n c ~  

+ u,7 Ial} + (2H-'  In 2 +/~) IAI (Sg.1) 

where the minimum is over real constants ( and q. The minimum in (Sg.1) 
occurs at unique values (o(fl,/~) and qo(fl, la) satisfying 

(o(/L/~)2 ~< qo( fl, l~ ) <~ �88 (3g.2) 

I f  t - l ~  is bipartite, then ~o(fl,/~) =0.  
Moreover, i f  D is any minimizer for ~t~4,, then for all x we have n(x) 2= 

1 "~ Tr[D~.] = q. I f  t - I ~  is not bipartite, we also have that the upper diagonal 
element of  D.,. is d(x) = ~o .for all x. 

Proof. Since x~--~ - I n  cash x/~ is strictly convex and since we are 
. . . .  f 2 mmlmlzmg over the convex domain ~(o ~< qo}, we conclude that the mini- 

mum occurs at unique values. This is just a special case of the more general 
statements in Lemmas 3.10 and 3.11. 

If t - / a  is bipartite, it is unitarily equivalent to - ( t - p ) ;  it then 
follows from (3d.19) that if (o and qo are minimizing values, then so are 
-~o  and qo. By uniqueness we therefore have that (o = 0. 

If t - / ~  is bipartite, we may without loss of generality assume t 
bipartite and /~=0. It then follows from part (a) of Theorem 3.13 that all 
minimizers D of ~ts.~, satisfy that n(x)'- = L 2 Tr[D X] is a constant r/. We see 
from Lemma 3.7 that D.,. is of a form such that ( T j , - U D ) 2 =  T2+  U'-D 2. 
Since the minimum in (Sg.1) occurs for ( o=0 ,  we see from (3b.30) that 
(Sg.1) is indeed a correct formula for the pressure. 

If t - p  is not bipartite but real and if the functions ( and q define a 
minimizer for ~.~, (in the sense of Lemma3.11), it follows from the 
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invariance proved in Theorem 3.13 that ff and q are independent of x. It is 
then clear from (3b.30) that (3g.1) is correct and that the parameters ,7 = V/o 
and ( = ( o  are the unique minimizers in (3g.1). | 

We now restrict to the case when t - / ~  is bipartite or more generaly 
to the case where t - / ~  is unitarily equivalent to - ( t - # )  and 

1 < [-~ T r [ l t -  I t l - ' ]  ~< oo (3g.3) 

holds. Then a critical inverse temperature 0 </3c < ~ is uniquely deter- 
mined by 

1 = [--~1 Tr[-lt-/~l -~ tanh(flc I t - i t l ) ]  (3g.4) 

since the right side in (3g.4) is continuous and grows monotonically with 
tic from 0 to U I A [ - '  T r [ i t - i t ( - ' ] .  

The following theorem establishes that /3,. is indeed critical, provided 
the spectrum of t - i t  is symmetric about 0 because then ~o(fl, It) always 
vanishes and the issue of determining the minimizer D simplifies. Notice 
that in the case where ~o=0 the gap around zero in the spectrum of 
T , , - U D  is at least 2Uq~/~. If t - i t  has a zero eigenvalue, then 2U~'o/2 is 
precisely the value of the gap. 

3.15 Theorem (Gap equation). Let  t be real and translation 
invariant and U x = U > 0  for all x e A .  Assume that t - l t  and l i - t  are 
unitarily equivalent as in the case of a bipartite lattice with It = O. Let fl,. be 
given by (3g.4) in case (3g.3) holds and fl,. := ~ otherwise. Then ~lo=O for 
fl <~flc. Moreover, qo(fl,/~) is a strictly monotonically increasing function in 
tic < fl given by the gap equation 

1 U T r  1 = ~ ~--[ ( [ ( t - i t ) Z + U 2 q o ] - m t a n h { ~ [ ( t - # ) 2 + U 2 q o ] ' / 2 } ) ( 3 g . 5 ,  

provided [3~ < ~ .  

ProoL Equation (3g.5) follows by setting the derivative with respect 
to r/ of the expression on the right side of (3g.l) equal to zero. Note that 
since tanh x < 1, (3g.5) implies 

1 I UI - 7n _< 1 0 o  l/z 1 ~'< 2 ]-A-~ T r [ ( t -  It)2 + U'-r/~ "~2 

in agreement with our previous condition qo ~< 1/4. 
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The monotonicity of r/o(fl,/a) in f l > f l c  is straightforward from 
(3g.5). 1 

On a translation-invariant lattice we may represent t - ~  by its eigen- 
values ek for k ~ B Z ,  the Brillouin zone, whose volume we denote by IBZD. 
In the thermodynamic limit, IAJ --* oo, the gap equation (3g.5) then takes 
the more familiar form 

1 IUI J" B ( e ~ + U 2 q o ) - ~ / 2 t a n h I ~ ( e ~ + U 2 q o ) ~ / 2 ] d k  

which is the BCS gap equation. 

4l THE GENERALIZED HF THEORY FOR THE H U B B A R D  
MODEL WITH REPULSIVE INTERACTION 

4.a. Linearization of the Pressure Functional 

In this section the generalized HF theory will be applied to the 
Hubbard model with repulsive interaction. We continue to use the notation 
of Section 3 and consider the Hamiltonian 

H+ ~ t ~ t = t x y C x . . C y . . +  ~ Ux(c~.t TCx. r _ i ) ( c x ,  tc-,~..t-�89 (4a.1) 
x , y ~ A  x e A  

a 

which differs from H_ in (3a.l) in the reversed sign of the interaction, i.e., 
we again assume Ux > 0. A close look at the pair interaction reveals that 

t C t C t t c.,.. r c x, T x. I C x. ~ = .,:. T c x. ~ c x. ~ c.,.. T >10. Thus the interaction (corresponding 
to the operator V in Section 2) is repulsive and Theorem 2.11 applies. 
Hence, we may restrict our attention to 1-pdm of the form 

1 _  

and the energy expectation reduces to 

$'(F) = T r [ T ~ ]  + ~ Ux{ [Tr (x ) -  �89 �89 -I~ ' , (x)l  2 } 
,~,'E A 

(4a.2) 

where ~,,~(x):= (x, trl ~ Ix, a ) ,  ~, .(x):= (x, TI ? Ix, ] ) ,  and we denoted 

' ( t o # O  ) (4a.3) T,  := 
t 
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on of .  Obviously,  g ( F )  depends on y only and we will write g(~, ) :=  g(F) .  
In fact, dealing merely with y, we will have to consider only operators  on 
o f  rather than o f  ~ ~ throughout  this section. 

We denote Qx := I~QI., .  for any opera tor  Q on o f ,  where 1.,. is now 
the projection onto functions in o f  vanishing everywhere except at x. 

Equipped with this notation,  we may  write 

_ ( y , ( x )  T.(x) '~ 1,. (4a.4) 
~ ' " - \ ? , (x )  y~(x)/ 

and one  easi ly  verifies that 

[;~T(X)- ~ , _ _ ~ ] [ 7 t ( x ) _ 2 ] _ l T , ( x ) l Z = � 8 9  I )2 _ _ ~ .,.3 ~ TrE(~,,- �89 
(4a.5) 

The ent ropy depends merely on ?, too, namely 

S(7) = - �89 T r [ F l n  F +  (1 - F) ln(i  - F ) ]  

= - T r [ y  In ? + (1 - 7) ln(l  - y)]  (4a.6) 

and so does the pressure expectation 

-~t~ , , (y)  = T r [ T ; , ? ]  + �89 Y ". U., .(Tr[7., .]-  1 ) z -  �89 ~ U.,. Tr [ (7 . , . -  �89 2] 
A" A" 

+ / ~ - '  T r [ y  In 7 + (1 - 7) in(I - ?) ]  (4a.7) 

where we again denoted S(y) := S(F) and ~t~,,(Y) := ~e. . (F) .  For  the exami- 
nat ion of the H F  ground states we denote .@~, ~, := lira a ~ ~_ .@/~, ,, = 8 - yN. 
Let us introduce an auxiliary functional 

- ~ p . . ( y )  = Tr[  T ~ y ]  - �89 Z Ux T r [ ( y . ~ -  �89 2 ] 
x 

+/~-~ T r [ y l n  ? + ( l - y ) l n ( l - y ) ]  (4a.8) 

where p(x ) :=  Tr[Tx] .  Of  course, we write ~_ .  ,, := iim/~_ ~. ~t~. ,- Notice the 
formal similarity between (4a.8) and (3b.23). Replacing T,  by T',  and F '  
by 1, in (3b.23), we arrive at (4a.8) except that  p(x) is missing [and  that 
there is an extra un impor tan t  term - ~  IAI in (3b.23)].  The reason p(x) is 
missing in (3b.23) is that Tr [F ' , . ]  = 1 is a consequence of the form (3b.13). 
This is the crucial formal difference between the attractive and repulsive 
cases. We claim that 

- o ~ . . ( y )  = - ~ .  ,(?) + �88 ~ U,-[p(x) - 1 ] 2 (4a.9)  
A 
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Indeed, since ) ' x - �89  has zero trace, 

__ ~fl .  , u (~ )  _.~ ~ 0 .  p ( )~)  __ 1 "]2 1 " - ~ ~ Ux{ [ p ( x ) -  1 - Tr[- (yx-  Elx) ' ]  
x 

+ Tr [(y.,. - �89 I x) 2 ] } 

= ~ U x { [ p ( x ) -  1 ] 2 - T r E � 8 9  112 Ix.]} 
.v 

1 .]2 - ~ ~ Ux[p(x) - 1 (4a.10) 
-r 

Equation (4a.9) is an important observation. With our machinery 
developed in Section 3 we can only determine the minimizers for - ~ p . ,  
rather than - ~ . ~ , .  This substitution is justified only if we can show that 
a 1-pdm ? minimizing -~o,  ~ also minimizes -~p,  ~,. We succeed in doing 
so only in. case of bipartite hopping matrices t with chemical potential 
/~ = 0. In fact, in this case we will prove that 

p(x) = Trl-~,,.] = ~  <x, ~1 }' Ix, cr> = 1 (4a.11) 
~r 

for all lattice points x e A. We shall refer to (4a.l l)  as the constant-density 
lemma because of its similarity to the main theorem in ref. 23. Equation 
(4a.l 1 ) establishes the formal analogy between the attractive and repulsive 
cases. 

We start with the analysis of - ~ .  ~, and its minimizer. We will denote 

- ~ ( f l , / l )  := min -~p.u(Y) (4a.12) 
0~<7,~< 1 

for positive or infinite ft. In analogy with (3b.25), we first observe that 

- T r [ ( y . ~ - � 8 9  {-2TrI 'D,-7. ,-]+TrED~.]} (4a.13) 
d, 6 

where 
:= (d(x) a(x) 

D,. \6 (x )  - d ( x ) J  

Because of (4a.13), the proof of the following lemma is a line-by-line copy 
of the one for Theorems 3.3 and 3.4. 

4.1 Lemma.  For all 0 < fl <~ ~ and all II we can write the auxiliary 
fimctional ~(fl ,  #) as the followbTg variation over the functions d and 6: 

- ~ ( f l ,  ~) := min "~e. ,,(d, 6) - 2fl-J [AJ in 2 (4a.14) 
d.,5 
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where 

~p.~,(d. 6):=~ep.u(D):= - f l - ~  Tr l n c o s h ~ ( T , -  UD) 

I z  U~Tr[D]]  
+ 2 x " 

and 

~'~:.,,(d, 6) := ~ .  ,(D) := - �89 Tr IT',, - UDI + k ~ u, Tr[D~] 
x 

I f  a potential D minimizes ~gp. ~ then the operator 

v={l+exp[fl(T'.-UD)]}-' for f l<oo 

o r  

Bach et  al. 

(4a.15a) 

(4a.15b) 

Conversely, if), is a minimizer for -~tl, j,, then the potential D defined by 
(4a.17) minimizes ~?t~.~ and satisfies (4a.16). 

As in the attractive case, the minimum in (4a.14) occurs for functions 
d and 6 satisfying d(x)Z+ 16(x)12-..< �88 for all x E A. 

We prove an analog of Lemma 3.5 by merely replacing Tj, by T'j, in 
the proof of that lemma. 

4.2 Lemma (Gap estimate). Let D be a minimizing matrix- 
valued potentialfor ~p.i, or . ~ . ~  and denote the eigenvalues of  T~,- UD by 
el, e2 ..... e21m. Then, for any j =  1, 2 ..... 2 IA[, we have 

1 --1 12  1 1 ]ejl~-4UminlA I --fl- In2 or [ejl>~Umi. lAI-  (4a.18) 

respectively, where U.,i. := min.,-EA { Ux}. 

Lemma 4.1 allows us to concentrate now on the determination of the 
functions d and 6 that yield a minimizer D for ~p.,  or ~ .  ~, respectively. 
Note that ~a.~, in the repulsive case differs from ~p. j, in the attractive case 
only by the replacement of T~, by T'~. 

7., = (D.~ + �89 Tr [y.,.]) 1.,. (4a.17) 

y = z ( T ' . - U D )  for f l=oo (4a.16) 

minimizes the auxiliary functional -~p,  u and satisfies the consistency equa- 
tion 
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4.b. Constant-Density Lemma for Bipartite Lattices at 
Half-Filling 

In this section we will assume that the hopping matrix t is bipartite 
(possibly nonreal) and the chemical potential ~ equals zero. It will turn out 
that this choice of t and /~ allows us to conclude that Tr[7]  = IA[ = 
�89 dim Jeg, which is the reason for calling this case half-filling. 

4.3 Lemma (Antiferromagnetic spin alignment). L e t  t be 
bipartite (but not necessarily real) and p = O. Then 

~/'tj. ,(d, 6) >1 ~t~.,,((- l) x ( dz + 1612) 1/2, 0) (4b.1) 

If n(x) := [d2(x) + la(x)l 2] ~/2 > 0 for all x ~ A, equality holds in (4b.1) tf 
and only if for all x ~ 2 

d(x) f ( x ) ' ~ = ( _ l ) X n ( x ) w ( 1  ) w *  
6(x) - d ( x ) )  - 1  

(4b.2) 

for some unitary 2 x 2 matrix w independent of  x E A. 

The proof of Lemma 4.3 is in complete analogy to the proof of 
Lemma 3.7. We merely have to replace To by T~. Notice that (4b,2) results 
from 

FdC, I dlyl I pIxl l 
t.,.,.Ln(x ) n--~j=O, t,..,,Ln(x ) n--~j=O (4b.3) 

which replace the conditions (3d.25a) and (3d.25b) in the proof of 
Lemma 3.7. Note that (4b.2) shows that the potential D has the staggered 
order characteristic of antiferromagnetism. The form (4b.2) is exactly what 
we need to prove the constant-density lemma. 

4.4 I.emma [Constant  density}.  Let t be bipartite (but not 
necessarily real) and kt = O. Define 7 by 

:= {1 + e x p [ f l ( T ~ -  UD)] } - '  (4b.4) 

where Dx is subject to condition (4b.2 ) for some unitary 2 x 2 matrix w. Then 

Tr[z,.]  = ~  <x, a[ ~' Ix, a> = 1 (4b.5) 
o" 

In particular, ;Fr[v] = Z.,-Tr[~.,.] = IAI. 

ProoL We want to show that 

O=~.<x ,  crl �89 a > = ~ , < x ,  al tanh l , . ~fl(To-- UD)Ix,  a> (4b.6) 
~r a 
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We define a unitary transformation 

(0 
V,,,:=w 1 

One easily checks that 

Thus, 

- lo) w t ( - 1 )  x 

V,,.(To-' UD) V ~.. -- - (T 'o -  UD) 

(x, al tanh �89 UD) Ix, a )  
o- 

= ~ ( x, a[ V,,[tanh �89 T 'o-  UD ) ] V,t,. Ix, a )  
a 

= - - ~  (x, al tanh i , i [3(To-  UD) Ix, a )  
cr 

Bach et  al. 

(4b.7) 

(4b.8) 

(4b.9) 

z (T 'o -  UD)= lim {1 +exp[[3(T~-  UD)]} - '  
f l ~ c c  

The function n(x)= [d(x)2 + 16(x)12] 1/2 corresponding to a minimizer D is 
unique and vanishes either everywhere or else nowhere. The potential D ,. must 
be of the form (4b.2)for some unitary matrix w. As a consequence, the HF 
Gibbs states and ground states are unique modulo gauge transformations. 

Proof. The right-side of (4b.10) is clearly a lower bound to -~([3,  0) 
since -~p,o(y)>~-~a,o(y)  for any 0~<~<1. On the other hand, by 
Lemma 4.3 the minimum on the right side of (4b.10) can be attained by a 
potential D satisfying (4b.2) (e.g., with w equal to the identity matrix), We 
then have a minimizer y for ~ defined in terms of D by (4a.16) (with 
/~ = 0). Note that because of the gap estimate we know that 

I f  a potential D minimizes ~a.o for 0<[3~< ~ ,  then ~ defined in (4a.16) is 
a HF Gibbs state ([3 < ~ )  or ground state ([3 = oo ). This y satisfies the con- 
sistency equation 

Z,.= (Dx+ �89 ~ (4b.ll) 

-~(f l ,  0)= -t~(fl, 0)= min ~?p,o(d, 6 ) -2f l - '  IAI ln2 (4b.10) 
d, 6 

which is equivalent to (4b.6.) | 

Now we are in a position to determine the actual pressure. 

4.5 Main Theorem (Ground state and positive-temperature 
pressure). Let t be bipartite and p =0.  Then for all 0<fl~< oo 
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It  therefore follows for bo th  finite and infinite fl that  ? satisfies the constant-  
density relation (4b.5). Thus,  by (4a.9), 

- - : ( f l ,  O) ~< -- ~#. o(Y) = -- :#, 0(3:) (4b.12) 

This concludes the proof  that  y is a H F  Gibbs or ground state. The remain- 
ing par t  of the theorem follows by an analysis identical to the one leading 
to L e m m a  3.8, L e m m a  3.10, and Theorem 3.12 [par t  of the conclusion is 
that ~ /~ .o( ( -1)x  n, 0) is convex as a function of q =n z and strictly convex 
at its min imum] .  | 

Finally, we ment ion that  a result on spatial symmetry  analogous to 
Theorem 3.13 (with the same proof)  holds in the repulsive case. 

4.6 Theorem (Spatial invariance). Assume t is bipartite (not 
necessarily real) and It = 0 and let ff be the group of  spatial symmetries of  
t and U. For any minimizer (d, 6) of  ~ . o  we have that the function 
n ( x )  = [d(x)2  + 16(x)l 2] 1/2 is invariant under ft. The HF ground and Gibbs 
states are invariant under ~ for z ~ f# unless r ( A ) =  B. 

4.c. Par t ic le -Ho le  S y m m e t r y  

In the special case of a real biparti te hopping matrix t at half-filling 
/~ = 0 there is a more  elegant way of deducing Theorems 4.5 and 4.6 from 
Theorems  3.2, 3.5, and 3.8 by means of a partial particle-hole transforma- 
tion only on the T-spins. More  precisely, we define the Bogoliubov transfor- 
mat ion ~/:ph, T by 

~:ph, r c* * = ( -  1)" -~', l ~ ph. 1" C x .  t (4c. 1 ) 
h, T ct t t x. J. ' ~  ph. T = r x. t 

Then 

~//'t 
~r T H + ph, r = 

t t t.~,,(--C.,', rC.,,, T + Cx. lC.,,,t) 
x I' 

+~ u~(c~,ic~. ~ ~ * _!) -~)(c~,~c.~,~ z 
x 

E (t-~yc].Tc.,'.~+t.~.,'c].~Cy.~)-~t .... 

-Y, Ux(C.*~.TC.,..T-- ~_)fcx.~c.~,1-- 
3r 

H_ (4c.2) 

822/76/I-2-6 
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using t.~.,, = t-~,, = t.,,x, the canonical anticommutation relations, and 
~.~ tx~ = 0. Since the Bogoliubov transformation leaves the set of quasi-free 
states invariant, it immediately follows that 

EEl(H_)= inf{p(H ) I P  is quasi-free} 

=inf{P,,~h.7(H-)h P is quasi-free} 

=inf{p(H+)lp is quasi-free} 

= EHF(H+ ) (4c.3) 

and a similar equality holds for the pressure at finite temperatures. Thus, 
there is clearly a one-to-one correspondence between the 1-pdm F+ mini- 
mizing the generalized HF pressure functional for H§ and the 1-pdm F_ 
minimizing the generalized HF pressure functional for H_ via 

/--+ t = ~/Vpn. T F -  ~/V'ph. T (4c.4) 

Note that if t is not real, the attractive and repulsive cases are not 
unitarily equivalent. In fact, it follows from Theorems 3.5 and 4.5 that in 
the attractive case there may be no more than two minimizers, while in the 
repulsive case there is a continuous family of minimizers related by spin 
SU(2) transformations. 

4.d. Ferromagnetism at Infinite Repulsion 

In the preceding sections we found that for bipartite lattices at half- 
filling, N= IAI, the minimizing 1-pdm always has antiferrornagnetic order, 
i.e., the sign of d on the A sublattice is always opposite to the sign on the 
B sublattice. On the other hand, Nagaoka's Theorem states that the true 
ground state (which happens to be the free-particle HF state) for 
N =  I A I -  1 has maximal spin S =  N/2, provided one takes U =  oo. t25'3~ 
In our language this would meaia that the ground state ~ would satisfy 
[after an SU(2) rotation] Fz(x)= 0. Setting U=  oo mathematically means 
projecting out the vectors with doubly occupied sites from the full Fock 
space. 

In the context of the generalized HF approximation one can also 
make sense of U = oo and we will derive an analog of Nagaoka's Theorem 
for the HF minimizer. The analogy goes too far, however, because, as we 
will prove, for any I ~<N~< IA( - I the HF ground state 7o will be fully spin 
polarized. In contrast, for the true Hubbard model this does not hold, i.e., 
for N =  IAI--2(11'9'29'27) o r  for N~<0.51 IAI, 128) the ground state does not 
have S = N/2. 
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Let us start by defining what is meant by infinite repulsion in the con- 
text of generalized HF theory. Recall from (4a.2) that the energy functional 
for positive coupling Ux = U > 0 becomes 

g (7 )=Tr [T~7]  + U ~ {[~T(x)-- �89 �89 -17,(x)l  z} 
x E A  

= Tr [T~ , ]  + U Y' [t,T(x) 71(x)-  17,(x)l 2] + �88 IAI - �89 Wr[),] 
x ~  A 

(4d.1) 

We consider the particle number N = T r [ y ]  fixed. The last two terms in 
(4d.1) are therefore constants that we may ignore when determining the 
minimizing 7. The limit U--* ~ yields the constraint 

7v(x) ~l(x)-  17,(x)l'- =0  (4d.2) 

for any x e A. More precisely, if we define the Hartree-Fock energy of N 
electrons by 

E~F(N) :=inf{~'(7) + � 89  �88 IAI I 0~<~, ~< 1, Tr[),] =N} (4d.3) 

then limv~ ~ E~F(N) HV = Eu= ~(N), where 

EHFu= ~(N):= inf{Tr[T~),] 10 ~< 7 ~ 1, Tr[7] = N, ~ fulfills (4d.2) } (4d.4) 

We remark that N<~IAI is automatic in (4d.4) because the constraint 
(4d.2) is equivalent to Det[yx] =0,  which together with 0 ~<? ~< 1 implies 
that Tr[z~] ~< 1 and hence N = Z.~ Tr[Tx] ~< ]AI. 

4.7 Theorem (Ferromagnetism at infinite U). Let e~ <~ e2 <~ ... <~ elA I 
denote the eigenvalues of t. Then 

N 
H F  E u . ~ ( N ) =  ~ e; (4d.5) 

i = l  

A family of minimizing ~ for the variation in (4d.4) corresponds to the 
ferromagnetically saturated states, i.e., is given by 

(PN 
7 = w 0)  w* (4d.6) 

where w is any SU(2) matrix and PN is the spectral projection onto the 
eigenvectors with eigenvalues el, e2 ..... eN. 
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rw ~ ( N ) ~ < ~  e;, because any matrix of the Proof. It is clear that E v= = 
form (4d.6) is admissible for the variation in (4d.4). On the other hand, 
given any ~/ satisfying (4d.2), 0 ~< y ~< l and Tr[~,] = N. We can write 

i i 

where (q~;Iq~j) ~< 60 for all i, j. On the right side of (4d,7) we regarded of' 
as ~ ( ~ ,  and we denoted fi(x) := ~o;(x, T) and gAx):= ~p;(x, +). Now, 
define on OUFA 

such that 

i 

is completely spin-up polarized. The 1-pdm ~ naturally fulfills (4d.2). Our 
goal is to show that ~r ~< 1 and hence y ~< 1 since this, together with 0 ~< 
and Tr[7]  = N, implies (4d.5) because 

N 

Tr[Z~r ]  = T r [ T ~ 7 ]  =Tr[t~T] >t ~ e; (4d.9) 
i = l  

In order to demonstrate iT <~ 1, we need to take a closer look at the 
constraint (4d.2) first. We may rewrite (4d.2) as 

( ~  [f~(x,[2)(~ ,g;(x)[2) - ~f~(x)  g i (x ) t2=0  (4d.10, 

for all x e A. Let us denote 

A o : = { x ~ A  I f l (x )=f2(x)  . . . . .  fN(x) = 0} (4d.11) 

On Ao (4d.10) holds trivially, but on the complement it yields the existence 
of a complex number e(x) such that 

gt(x)=a(x) fl(x), g2(x)=~(x) f2(x) ..... gN(X)=O~(x) fN(x) (4d.12) 

for any x e A \Ao by Schwarz' "equality." We define a normal operator A, 
AA*=A*A, on )Ca by 

A := ~ ~(x) )x)(xl  (4d.13) 
x E  A \ A o  
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and denote the projection onto Ao by B :=Z.~A0 Ix><xl. Hence, we may 
express (4d.12) as g~= Afi+ Bgi. By means of A and B we can write 

6jj>~ (cp~ltpj)= ( f~ l f j )  + (g~l g j ) =  (f,.] (1 + AtA)f j )  + (g~lBgj) 

= (f,.[ (1 + A A * ) f j ) +  (g~lBgj) (4d.14) 

We define F i := l f~) ( f~[ ,  G,:=lg~)(g~l, R , :=BIg , ) ( f , . [ .  Now, ~ t ~ l  
[and therefore (4d.5)] are direct consequences of the inequality 

The inequality (4d.15) follows from (4d.14), ~r=Z~Fi+G~, and 
AA* = A'A,  since 

g~gj= lYe)(f~ I f j ) (  fjl ~< If~>(6/j-(f,-I A*A Is - - ( g i l g g j ) ) ( f j l  

= .6,jF,- F,A *AFj - R~ Rj = 5o.F,- F, AA tFj - R~ Rj 

G~Gj= [g~)(g, ] g j ) (gj[  <~ ]g~)(5 u -  (f~ I f j ) ) (g j [  

= foG i - AFiFjA t - RiFjA* - AFiRJ -- R~R~ 

F, Gj= F, AFjA* + FiARJ I (4d.16) 

The previous theorem does not tell us when the ferromagnetically 
saturated states are the only HF ground states. The proof only gives the 
following criterion, which, unfortunately, may be very difficult to verify. 
Assume that eu < eu +1, which ensures the uniqueness of Pu. The criterion 
for uniqueness of the ferromagnetic states given by 1-pdm of the form 
(4d.6) is that the spectral projection Pu be connected in the sense that any 
two points x, y �9 A can be connected by a path x =x0,  x~, ..., x,, = y for 
which (xi[ Pu [x~+ ~):/:0. To prove this criterion, suppose that y in (4d.4) 
is a minimizer, i.e., 

N 

Tr[T ;7 ]  =TrA[t~t-] = ~ ei (4d.17) 
i = l  

where ~Tt is defined as in (4d.7). Hence, YT = PN = ~7~ and (4d.15)implies 

~ R ; : 0 ,  I A , ~ F , ] : O  (4d.18) 

which, in turn, gives 

Pu = iT = Z F, + 6, = ~. F, + AF, A * + AR, + R*~A* + BG,B 
i i 

= ~ F~ + AF~A* + BGiB (4d. 19) 
i 
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The right side of (4d.19) is not connected between Ao and A \ A o  unless 
A o = ~ or A o = A. The case Ao = A simply means that y is completely spin- 
down polarized, in accordance with (4d.6). Conversely, assuming Ao = ~ ,  
we observe that (4d.19) also implies [A, PN] = 0 and obtain 

[ ~ ( x ) - ~ ( y ) ] ( x l  PN l Y ) = 0  (4d.20) 

for all x, y E A \ A o  = A. But PN was assumed to be connected, and there- 
fore ~ (x )=cons t  for all x e A .  In other words, f i = ~ g i  for all i, which 
implies (4d.6). 

5. S U M M A R Y  OF HF THEORY OF THE HUBBARD MODEL 

5.a. Introduct ion 

Our aim here is to give some perspective to the results in Sections 3 
and 4 by summarizing them--with special emphasis on symmetries and 
their breaking. The first task is to define symmetry breaking. We start with 
a Hamiltonian H that, in many cases, is invariant under some symmetry 
group G, each element of which is represented by a unitary operator on our 
Hilbert (Fock) space of dimension 4 IAI. The representation of the group G 
might be a ray representation, as in the case of "magnetic translations." 
The unitary operator corresponding to an element w ~ G will be denoted by 
W(w)  on the one-particle space of' �9 #(' and by ~t/'(w) on the Fock space 
~ .  Since the only unitaries that transform HF states into HF states are 
Bogoliubov transformations, we restrict our attention to groups consisting 
of such transformations. This restriction is not really a cause for disap- 
pointment because all the symmetry groups that are usually considered, 
such as rotations in real space, rotations in spin space, translations, etc., 
are, in fact, represented by Bogoliubov unitaries. The reason is simply that 
most symmetry groups in physics are defined by their action on one par- 
ticle and are then extended to N >  1 particles by tensoring. This is exactly 
what number-conserving Bogoliubov transformations do. 

We shall take the point of view that a state breaks a symmetry if  the 
state is not invariant under the action o f  the corresponding symmetry group. 
This is formalized as follows. 

5.1 Defini t ion (Broken or unbroken symmetry) .  Let G be a 
group represented by unitaries as described above. Let  p be a state on the 
operators on Fock space ~ corresponding to the Hilbert space o,~. We say that 
the G symmetry is unbroken in the state p if, for  each w ~ G, p is invariant 
under the Bogoliubov transformation ~r w ), i.e, p( ~C ( w ) A'lC ( w ) t) = p( A ). I f  
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the state is not invariant f o r  all w e  G, we say that the G symmetry  is 
broken in the state p. 

We are particularly interested in HF ground states or finite-tem- 
perature Gibbs states for a Hamiltonian H invariant under the action of 
some group G, i.e., ~r = H for all we  G. The interesting ques- 
tion is then whether or not the G symmetry is broken in these states. 

The contrast between the usual theory and the HF  theory should be 
kept in mind. While the original Schr6dinger equation H~b = Er  defines a 
linear theory, the HF  theory that approximates it is intrinsically a non- 
linear, one-particle theory. Linear combinations of HF  wave functions 
(which are Bogoliubov transforms of the zero-particle vacuum) are not HF 
wave functions. On the level of states (either pure states, A ~ (~1 A IqJ), 
or Gibbs states), the HF states do not form convex sets. Usually, if Pl and 
P2 are states (either ground states of some Hamiltonian H or Gibbs states 
of H at some temperature T-- in  the thermodynamic limit there can be 
more than one), then p = 2p1+ (1 - 2 ) p 2  is an admissible state (ground or 
Gibbs). As discussed in the introduction, this is not true for HF  states, 
because p is not usually a HF state when p~ and P2 are. In the usual theory 
we can ask for the extremal states (i.e., those states that are not convex 
combinations of other states at the same temperature) and ask about their 
properties with respect to symmetry operations. An example to keep in 
mind here is the Heisenberg Hamiltonian, for which there is a magnetized 
ground state. By taking a convex combination of all ground states, one can 
construct a ground state that is SU(2) invariant, but this state is not 
extremal in the set of ground states. From this example we learn that in the 
usual theory symmetry breaking should be sought only with extremal 
states--which correspond to pure phases. 

The HF states, on the other hand, do not form convex sets and there- 
fore we cannot talk about extremal states. We regard each HF state, 
heuristically, as playing the role of an extremal state. Indeed, in the usual 
theory symmetry breaking in a finite system is infrequent; typically it is 
necessary to pass to the thermodynamic limit in order to see it. In contrast, 
if symmetry breaking occurs in HF theory, it is usually manifest for the 
finite system. The following discussion refers to either the ground state or 
to positive-temperature states. It is to be understood that the symmetry 
breaking displayed in our three tables may not actually occur. In par- 
ticular, they will usually not occur if the temperature is high enough. 

5.b. Symmetr ies  of  the Hubbard  Hami l ton ian  

To begin our summary of symmetry breaking in the HF theory of the 
Hubbard model, we first list the symmetries of the Hubbard Hamiltonian. 
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There are two types of possible symmetries of H, global gauge symmetries 
and spatial symmetries. The spatial symmetries of H depend on the spatial 
symmetries of t and U as explained in Section 3.f. The gauge symmetries 
depend on the presence or absence of the following three properties: bipar- 
titeness of t, reality of t, and p = 0. Whether  the gauge symmetries are 
broken may depend on the sign of  the interaction. 

(i) Spatial symmetries. In Section 3.f, Theorem 3.13, we found that 
the spatial symmetries (if any are present) are broken only for a bipartite 
t and then only when/a---0. Each spatial symmetry either maps A to A and 
B to B or maps A to B and B to A. Even for bipartite t and # = 0 ,  the A 
to A symmetries are never broken. It is only the transformations z in the 
spatial symmetry group that take the A sublattice into the B sublattice, 
i.e., r ( A ) = B  [hence of  course r ( B ) = A ]  that are broken. In fact, in this 
case we must require that the two sublattices A and B have the same num- 
ber of points ( [AI--[BI) .  Whenever we refer to a broken spatial symmetry 
in Tables I - I I I ,  we always mean that it is only the symmetry of maps from 
A to B that is broken. (Note that there can be several maps from A to B, 
but by modding out by maps from A to A, we are left with one map from 
A to B). 

For  the very special case of  a real bipartite t, p = 0, and attractive 
interaction there are states that do not  even break the A to B symmetry. 
Indeed, according to (3d.19), there are states for which d(x)= 0 and fi(x) 
is constant on the whole lattice. These states are completely translation 
invariant. 

T a b l e  I. N o n r e a l  t 

Symmetries of H Broken Symmetries Spatial invariance 

Spin SU(2), U(1) No results except for U = oo, where spin 
SU(2) is broken but U(1) and spatial 
invariance are not 

Nonbipartite and/or 
#~0  

Bipartite/a = 0: 
Attractive 
interaction ~ 

Bipartite/a = 0: 
Repulsive 
interaction ~ 

Spin SU(2), U(1), Z2 Z2 

Spin SU(2), U(1), Z 2 

A-B symmetry broken 

Spin SU(2), Z 2 A-B symmetry broken 

Notice that even though we are in the bipartite case and ,u = 0, the attractive and repulsive 
interaction Hamiltonians are not unitarily equivalent when t is not real. 
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Table II. Real Bipartite t 
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Symmetries of H Broken Symmetries Spatial invariance 

~ 0 :  Attractive Spin SU(2), U(I) U(1) Not broken 
interaction 

/z=0: Attractive Spin SU(2), Pseudo-spin SU(2) A-B symmetry can be 
interaction ~ pseudo-spin SU(2) [in particular Z2 broken 

and U(I ) can be 
broken] 

No results except for U= oo, where spin 
SU(2) is broken but U(I) and spatial 
invariance are not 

Spin SU(2) (in par- A-B symmetry broken 
ticular Z2 is 
broken) 

##:0: Repulsive Spin SU(2), U(I) 
interaction 

p=0: Repulsive Spin SU(2), 
interaction ~ pseudo-spin SU(2) 

" For real, bipartite t and/z = 0 the Hamiltonians with attractive and repulsive interactions are 
unitarily equivalent. Because of the ( - 1 )x, a spatial symmetry between the A and B sublat- 
tices will not commute with this unitary transformation; hence this table fails to be the same 
for the repulsive and attractive cases. 

The gauge symmetries of the Hubbard  Hami l ton ian  that we shall 

consider are the following: 

(ii) Spin SU(2). The action of SU(2) on the Fock space was 
defined in (3d.40). It  is the Bogoliubov transform corresponding to a global 
spin rotat ion on the one-particle space ~,~?'. Every Hubbard  Hamii tonian  is 
invariant  under  this transformation. 

(iii) Phase U(1). The action of U(1) is given by the Bogoliubov 
t ransformation (3d.41). Again, every Hubba rd  Hami l ton ian  is invariant  
under  this U(1) symmetry. A generator of the U(1) t ransformation (3d.41) 
on Fock space is, in fact, the number  operator  A/'. Thus, U(1) invariance 
of a state implies particle conservation, but not  necessarily a definite 
particle number.  (See the remark after Theorem 2.3). A normal  state is 
precisely a state where the U(1) symmetry is unbroken.  

Table  III, Real .  N o n b i p a r t i t e  t 

Symmetries of H Broken Symmetries Spatial invariance 

Spin SU(2). U(1) U(1) Not broken 

Spin SU(2), U(I) No results except for U= oo, where spin 
SU(2) is broken but U(1) and spatial 
invariance are not 

Attractive 
interaction: Any'/~ 

Repulsive 
interaction: Any/J 
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(iv) Pseudo-spin SU(2). If we are in the real, bipartite case and 
p = 0 ,  we have a very large symmetry group. In fact the spin SU(2) sym- 
metry is supplemented by the pseudo-spin SU(2) symmetry defined 
in (3d.50). 

Although the pseudo-spin SU(2) commutes with the spin SU(2), the 
pseudo-spin is not completely independent of the spin. More precisely, the 
full symmetry group generated by the spin SU(2) and pseudo-spin SU(2) 
transformations is not isomorphic to the group SU(2)xSU(2) .  The full 
symmetry group is 80(4).  (34) This is so because for the particular matrix 
w - -  1 in SU(2), the spin transformation (i.e., the Bogoliubov trans- 
formation ~cV on Fock space) corresponding to (w, I )E SU(2) x SU(2) 
is identical to the pseudo-spin transformation corresponding to 
(1, w) ~ SU(2) x SU(2). This easily follows from (3d.51) with w = - 1, since 
the Bogoliubov transformation ~#/~(w) commutes with the transformation 
.~Vbp. This also corresponds with the observation that the representations 
we obtain for the two spins are either both integer or both half-integer. For 
our purposes it is more useful, however, to treat the spin and pseudo-spin 
transformations independently. Indeed, there will be cases where the 
pseudo-spin SU(2) is a broken symmetry but the spin SU(2) is not and 
vice versa. Merely saying that the SO(4) symmetry is broken would convey 
much less information. Likewise the U(1) phase symmetry is just a sub- 
group of the pseudo-spin symmetry; the Bogoliubov transformation ~ in 
(3d.41) is equal to the pseudo-spin transformation "/r corresponding to 

0 
W e - i0 

in SU(2). We therefore emphasize in Table II in the case of broken pseudo- 
spin (t real and bipartite, positive interaction, and p = 0 ) ,  that not only is 
the pseudo-spin broken, but there even exist HF ground states or Gibbs 
states for which the subgroup U(I) is broken. While the pseudo-spin is 
always broken in this case, there are states for which U(l) is unbroken, i.e., 
there exist normal ground states and Gibbs states. 

(v) Particle-hole Z2. The large symmetry group consisting of the 
spin SU(2) and pseudo-spin SU(2) required reality, bipartiteness, and 
half-filling. If, however, we give up the condition of reality, we saw in 
Section 3.d that the particle-hole symmetry survives as the antiunitary 
transformation given in (3d.45). 

In case that we have a real t we shall of course not distinguish the 
unitary and antiunitary particle-hole transformations as different sym- 
metries. In this case, breaking of pseudo-spin or of spin symmetry may or 
may not imply breaking of particle-hole symmetry (see Table II). Accord- 
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ing to (3d.47) (with an extra complex conjugation, because we are in the 
real-t case), the Z2 symmetry is unbroken if and only if 

6(x) - d ( x ) J  \3 (x )  - d ( x ) ]  
(5b.1) 

i.e., d(x) = 0  and 6(x) is  purely imaginary. 
Notice that in the case where the pseudo-spin is a broken symmetry 

(t real bipartite, attractive interaction, and/~ = 0 )  the U(1) symmetry must 
be broken when Z2 is unbroken and conversely Z 2 must be broken when 
U(1 ) is unbroken. Thus, there are two normal states in this ease, related by 
a particle-hole transformation, and there is one state (which cannot be a 
normal state) that is invariant under the particle-hole transformation. 

Note that the spatial A - B  symmetry (if it exists) is broken if and only 
if the Z2 particle-hole symmetry is broken. Although these are different 
symmetries, in the sense that they act as different transformations on the 
Fock space, they are identical when restricted to the HF ground states and 
Gibbs states. 

The following diagram illustrates the relationships among the foul" 
gauge symmetries: The particle-hole Z2 is a combination of spin and 
pseudo-spin, while the phase U(I)  is really a subgroup of the pseudo- 
spin SU(2): 

Spin SU(2) Pseudo-spin SU(2) 
\ / \ 

Particle-hole Z2 Phase U(1 ) 
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